7 research outputs found

    A p53-regulated apoptotic gene signature predicts treatment response and outcome in pediatric acute lymphoblastic leukemia

    Get PDF
    Russell O Bainer,1 Matthew R Trendowski,2 Cheng Cheng,3 Deqing Pei,3 Wenjian Yang,3 Steven W Paugh,4 Kathleen H Goss,5 Andrew D Skol,6 Paul Pavlidis,7 Ching-Hon Pui,4,8 T Conrad Gilliam,1 William E Evans,4,9,* Kenan Onel10–13,* 1Department of Human Genetics, 2Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 3Department of Biostatistics, 4Hematological Malignancy Program, St Jude Children’s Research Hospital, Memphis, TN, 5University of Chicago Medicine Comprehensive Cancer Center, 6Department of Pediatrics, The University of Chicago, Chicago, IL, USA; 7Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; 8Department of Oncology, 9Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, TN, 10Division of Human Genetics and Genomics, 11Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children’s Medical Center, New Hyde Park, 12The Feinstein Institute for Medical Research, Manhasset, NY, 13Hofstra Northwell School of Medicine, Hofstra University, Hempstead, NY, USA *These authors contributed equally to this work Abstract: Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well. Keywords: pediatric acute lymphoblastic leukemia, p53, gene expression signature, outcomes analysi

    Clinical and Genome-wide Analysis of Cisplatin-induced Tinnitus Implicates Novel Ototoxic Mechanisms.

    Get PDF
    Purpose Cisplatin, a commonly used chemotherapeutic, results in tinnitus, the phantom perception of sound. Our purpose was to identify the clinical and genetic determinants of tinnitus among testicular cancer survivors (TCS) following cisplatin-based chemotherapy.Experimental design TCS (n = 762) were dichotomized to cases (moderate/severe tinnitus; n = 154) and controls (none; n = 608). Logistic regression was used to evaluate associations with comorbidities and SNP dosages in genome-wide association study (GWAS) following quality control and imputation (covariates: age, noise exposure, cisplatin dose, genetic principal components). Pathway over-representation tests and functional studies in mouse auditory cells were performed.Results Cisplatin-induced tinnitus (CisIT) significantly associated with age at diagnosis (P = 0.007) and cumulative cisplatin dose (P = 0.007). CisIT prevalence was not significantly greater in 400 mg/m2-treated TCS compared with 300 (P = 0.41), but doses >400 mg/m2 (median 580, range 402-828) increased risk by 2.61-fold (P P P P P P = 0.003). GWAS suggested a variant near OTOS (rs7606353, P = 2 × 10-6) and OTOS eQTLs were significantly enriched independently of that SNP (P = 0.018). OTOS overexpression in HEI-OC1, a mouse auditory cell line, resulted in resistance to cisplatin-induced cytotoxicity. Pathway analysis implicated potassium ion transport (q = 0.007).Conclusions CisIT associated with several neuro-otological symptoms, increased use of psychotropic medication, and poorer health. OTOS, expressed in the cochlear lateral wall, was implicated as protective. Future studies should investigate otoprotective targets in supporting cochlear cells

    Pharmacogenomics of cisplatin-induced neurotoxicities: Hearing loss, tinnitus, and peripheral sensory neuropathy.

    No full text
    Cisplatin is a critical component of first-line chemotherapy for several cancers, but causes peripheral sensory neuropathy, hearing loss, and tinnitus. We aimed to identify comorbidities for cisplatin-induced neurotoxicities among large numbers of similarly treated patients without the confounding effect of cranial radiotherapy. Utilizing linear and logistic regression analyses on 1680 well-characterized cisplatin-treated testicular cancer survivors, we analyzed associations of hearing loss, tinnitus, and peripheral neuropathy with nongenetic comorbidities. Genome-wide association studies and gene-based analyses were performed on each phenotype. Hearing loss, tinnitus, and peripheral neuropathy, accounting for age and cisplatin dose, were interdependent. Survivors with these neurotoxicities experienced more hypertension and poorer self-reported health. In addition, hearing loss was positively associated with BMIs at clinical evaluation and nonwork-related noise exposure (>5 h/week). Tinnitus was positively associated with tobacco use, hypercholesterolemia, and noise exposure. We observed positive associations between peripheral neuropathy and persistent vertigo, tobacco use, and excess alcohol consumption. Hearing loss and TXNRD1, which plays a key role in redox regulation, showed borderline significance (p = 4.2 × 10-6 ) in gene-based analysis. rs62283056 in WFS1 previously found to be significantly associated with hearing loss (n = 511), was marginally significant in an independent replication cohort (p = 0.06; n = 606). Gene-based analyses identified significant associations between tinnitus and WNT8A (p = 2.5 × 10-6 ), encoding a signaling protein important in germ cell tumors. Genetics variants in TXNRD1 and WNT8A are notable risk factors for hearing loss and tinnitus, respectively. Future studies should investigate these genes and if replicated, identify their potential impact on preventive strategies
    corecore