6,998 research outputs found
Potential-energy (BCS) to kinetic-energy (BEC)-driven pairing in the attractive Hubbard model
The BCS-BEC crossover within the two-dimensional attractive Hubbard model is
studied by using the Cellular Dynamical Mean-Field Theory both in the normal
and superconducting ground states. Short-range spatial correlations
incorporated in this theory remove the normal-state quasiparticle peak and the
first-order transition found in the Dynamical Mean-Field Theory, rendering the
normal state crossover smooth. For smaller than the bandwidth, pairing is
driven by the potential energy, while in the opposite case it is driven by the
kinetic energy, resembling a recent optical conductivity experiment in
cuprates. Phase coherence leads to the appearance of a collective Bogoliubov
mode in the density-density correlation function and to the sharpening of the
spectral function.Comment: 5 pages, 4 figure
Spin Susceptibility Representation of the Pairing Interaction for the two-dimensional Hubbard Model
Using numerical dynamic cluster quantum Monte Carlo results, we study a
simple approximation for the pairing interaction of a two-dimensional Hubbard
model with an on-site Coulomb interaction equal to the bandwidth. We find
that with an effective temperature dependent coupling \Ub(T) and the
numerically calculated spin susceptibility , the d-wave pairing
interaction is well approximated by \frac{3}{2} \Ub^2\chi(K-K').Comment: 5 pages, 7 figure
Supersolidity, entropy and frustration
We study the properties of t-t'-V model of hard-core bosons on the triangular
lattice that can be realized in optical lattices. By mapping to the spin-1/2
XXZ model in a field, we determine the phase diagram of the t-V model where the
supersolid characterized by the ordering pattern (x,x,-2x') ("ferrimagnetic" or
SS A) is a ground state for chemical potential \mu >3V. By turning on either
temperature or t' at half-filling \mu =3V, we find a first order transition
from SS A to the elusive supersolid characterized by the (x,-x,0) ordering
pattern ("antiferromagnetic" or SS C). In addition, we find a large region
where a superfluid phase becomes a solid upon raising temperature at fixed
chemical potential. This is an analog of the Pomeranchuk effect driven by the
large entropic effects associated with geometric frustration on the triangular
lattice.Comment: 4 pages, igures, LaTe
The outer filament of Centaurus A as seen by MUSE
We investigate signatures of a jet-interstellar medium (ISM) interaction
using optical integral-field observations of the so-called outer filament near
Centaurus A, expanding on previous results obtained on a more limited area.
Using the Multi Unit Spectroscopic Explorer (MUSE) on the VLT during science
verification, we observed a significant fraction of the brighter emitting gas
across the outer filament. The ionized gas shows complex morphology with
compact blobs, arc-like structures and diffuse emission. Based on the
kinematics, we identified three main components. The more collimated component
is oriented along the direction of the radio jet. The other two components
exhibit diffuse morphology together with arc-like structures also oriented
along the radio jet direction. Furthermore, the ionization level of the gas is
found to decrease from the more collimated component to the more diffuse
components. The morphology and velocities of the more collimated component
confirm our earlier results that the outer filament and the nearby HI cloud are
likely partially shaped by the lateral expansion of the jet. The arc-like
structures embedded within the two remaining components are the clearest
evidence of a smooth jet-ISM interaction along the jet direction. This suggests
that, although poorly collimated, the radio jet is still active and has an
impact on the surrounding gas. This result indicates that the effect on the ISM
of even low-power radio jets should be considered when studying the influence
Active Galactic Nuclei can have on their host galaxy.Comment: 5 pages, 3 figures, Accepted for publication by A&
Spiral Magnets as Gapless Mott Insulators
In the large limit, the ground state of the half-filled, nearest-neighbor
Hubbard model on the triangular lattice is the three-sublattice
antiferromagnet. In sharp contrast with the square-lattice case, where
transverse spin-waves and charge excitations remain decoupled to all orders in
, it is shown that beyond leading order in the three Goldstone modes
on the triangular lattice are a linear combination of spin and charge. This
leads to non-vanishing conductivity at any finite frequency, even though the
magnet remains insulating at zero frequency. More generally, non-collinear spin
order should lead to such gapless insulating behavior.Comment: 10 pages, REVTEX 3.0, 3 uuencoded postscript figures, CRPS-94-0
3D Model Atmospheres for Extremely Low-Mass White Dwarfs
We present an extended grid of mean three-dimensional (3D) spectra for
low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD
radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg =
5-6.5 (cgs units) to derive analytical functions to convert spectroscopically
determined 1D temperatures and surface gravities to 3D atmospheric parameters.
Along with the previously published 3D models, the 1D to 3D corrections are now
available for essentially all known convective DA WDs (i.e., logg = 5-9). For
low-mass WDs, the correction in temperature is relatively small (a few per cent
at the most), but the surface gravities measured from the 3D models are lower
by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely
low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the
discrepancies seen in the radius and mass measurements for relatively cool ELM
WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also
use the 3D corrections to revise the boundaries of the ZZ Ceti instability
strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Neel order, ring exchange and charge fluctuations in the half-filled Hubbard model
We investigate the ground state properties of the two dimensional half-filled
one band Hubbard model in the strong (large-U) to intermediate coupling limit
({\it i.e.} away from the strict Heisenberg limit) using an effective spin-only
low-energy theory that includes nearest-neighbor exchange, ring exchange, and
all other spin interactions to order t(t/U)^3. We show that the operator for
the staggered magnetization, transformed for use in the effective theory,
differs from that for the order parameter of the spin model by a
renormalization factor accounting for the increased charge fluctuations as t/U
is increased from the t/U -> 0 Heisenberg limit. These charge fluctuations lead
to an increase of the quantum fluctuations over and above those for an S=1/2
antiferromagnet. The renormalization factor ensures that the zero temperature
staggered moment for the Hubbard model is a monotonously decreasing function of
t/U, despite the fact that the moment of the spin Hamiltonien, which depends on
transverse spin fluctuations only, in an increasing function of t/U. We also
comment on quantitative aspects of the t/U and 1/S expansions.Comment: 9 pages - 3 figures - References and details to help the reader adde
Field Theory And Second Renormalization Group For Multifractals In Percolation
The field-theory for multifractals in percolation is reformulated in such a
way that multifractal exponents clearly appear as eigenvalues of a second
renormalization group. The first renormalization group describes geometrical
properties of percolation clusters, while the second-one describes electrical
properties, including noise cumulants. In this context, multifractal exponents
are associated with symmetry-breaking fields in replica space. This provides an
explanation for their observability. It is suggested that multifractal
exponents are ''dominant'' instead of ''relevant'' since there exists an
arbitrary scale factor which can change their sign from positive to negative
without changing the Physics of the problem.Comment: RevTex, 10 page
Effet des taches foliaires causées par le Phaeosphaeria nodorum inoculé à différents stades de développement sur le rendement du blé de printemps
Des études en serre ont été réalisées pour évaluer l'effet du Phaeosphaeria nodorum sur le rendement du blé de printemps (Triticum aestivum, cv. Laval 19). Les plants de blé étaient inoculés aux stades gonflement épiaison, pleine floraison et grain laiteux. L'essai a été réalisé au cours de l'hiver 1993 et répété au cours de l'hiver 1994. L'inoculation du champignon pathogène P. nodorum entraîne généralement une augmentation significative de la surface foliaire infectée et une réduction du rendement comparativement aux témoins non inoculés. La surface foliaire infectée mesurée uniquement sur la feuille étendard est similaire à celle mesurée sur la plante entière. Le stade phénologique a un effet significatif sur toutes les variables observées: surface foliaire infectée, poids des tiges et des feuilles, poids des épis, poids des grains, poids des biomasses végétative et totale et indice de récolte. L'inoculation du pathogène au stade grain laiteux, le plus tardif de l'étude, semble avoir provoqué moins d'effets négatifs sur le rendement du blé comparativement aux trois autres stades étudiés. Selon les résultats de cette étude et les observations réalisées au Québec au cours des 15 dernières années, il est peu probable que les taches foliaires causées par le P. nodorum provoquent des baisses appréciables de rendement du blé de printemps au Québec.Greenhouse studies were carried out to evaluate the effects of foliar leaf spots caused by P. nodorum on spring wheat (Triticum aestivum, cv. Laval 19) yield. Wheat plants were inoculated at booting, heading, flowering and milking growth stages. Experiments were first performed in winter 1993 and repeated in winter 1994. Inoculation of P. nodorum usually resulted in an increase of leaf spots and a decrease of yield compared to uninoculated plants. Foliar flag leaves spots were similar to total plant foliar leaf spots. All variables were significantly affected by inoculation stages : infected foliar area, biomass of straw and leaves, biomass of spikes, biomass of grains, vegetative biomass and harvest index. Inoculation at milking growth stage seemed to resul in the least negative impacts on yield compared to all other stages. From the results of this study and observations performed in Quebec during the 15 past years, leaf spots caused by P. nodorum should not resul in important spring wheat yield losses in Quebec
Characteristics of oxygen isotope substitutions in the quasiparticle spectrum of BiSrCaCuO
There is an ongoing debate about the nature of the bosonic excitations
responsible for the quasiparticle self energy in high temperature
superconductors -- are they phonons or spin fluctuations? We present a careful
analysis of the bosonic excitations as revealed by the `kink' feature at 70 meV
in angle resolved photoemission data using Eliashberg theory for a d-wave
superconductor. Starting from the assumption that nodal quasiparticles are not
coupled to the magnetic resonance, the sharp structure at meV
can be assigned to phonons. We find that not only can we account for the shifts
of the kink energy seen on oxygen isotope substitution but also get a
quantitative estimate of the fraction of the area under the electron-boson
spectral density which is due to phonons. We conclude that for optimally doped
BiSrCaCuO phonons contribute % and
non-phononic excitations %.Comment: 6 pages, 3 figure
- …