11 research outputs found

    Spatial and spectral brightness improvement of single-mode laser diode arrays

    Get PDF
    This thesis addresses the strong need for efficient and compact techniques for brightness enhancement of laser diode arrays and responds to the challenges created for high performance optics and techniques for laser characterisation. A novel optical inter-leaving method for a 7-bar stack of single-mode emitters, providing a nearly 2-fold improvement in the slow axis beam parameter product, enabling fibre-coupling, is demonstrated. A laser-written dual-axis optics approach is used to perform challenging slow axis collimation combined with fast axis correction for closely-packed 49-single-mode emitter bars, to provide low-loss collimation with high pointing accuracy of less than 3% and 10% of a beam divergence in the fast and slow axis direction, respectively. This produces excellent source for application beam-combined laser diode systems. An emitter-by-emitter simultaneous analysis is used to provide spectra and far field pointing for all emitters and evaluate the performance of various external cavity configurations with Volume Holographic Gratings (VHGs). For the ultra-collimated bars, high efficiency VHG-locking is shown to be maintained over enhanced range of temperatures (>17˚C) and large laser-VHG distances (>110 mm). Highly effective feedback enables the use of a folded cavity configuration for wavelength selection over a range of 8 nm for the full 49-emitter bar, giving a prospect for multi-wavelength single-VHG-locking of bars for cost-effective spectral combining. An innovative technique of wavelength stepping by individually-formed folded cavities for 5 and 7 sections along the bar demonstrates a potential to produce a source for high performance dense spectral beam combining. In a VHG-based Talbot cavity, eight emitters are coherently locked with a highvisibility interference pattern at 1W of output power. The results of phase-locking for full 49-emitter bar show that the slow axis pointing variation of ± 2mrad produces different supermodes, for a fixed alignment of the cavity, thus it must be additionally corrected for further improvement

    Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland

    No full text
    In this article, the authors analyzed two extreme investment variants considering the installed capacity of Poland’s residential pv installation: (a) pv installation meets electricity demand only in the first year of operation, and in each subsequent year it is necessary to purchase electricity at market prices; (b) installation meets electricity demand even in the last year of operation, and in each previous year, the excess of generated electricity needs to be transferred back to the grid, with the limited (by law) right of drawing it from the grid for free in the future. In the article, a sensitivity analysis was performed, and profitability changes were established based on the NPV value, depending on case (a) or (b). The performed analyses showed that the pv installation profitability should not be analyzed, assuming only one moment when it meets 100% of the household’s electricity demand. It was shown that the choice of such a moment, depending on the value of particular technical and financial parameters, can lead to a change in the NPV value, even over 10%. Although the studies were done for Poland, such an approach can be implemented in other countries

    Wavelength-locking of an ultra-collimated 49 element single-mode diode laser array by a distant VHG

    No full text

    Reformatting linear beam arrays to hexagonal beam arrays using custom refractive micro-optics

    No full text
    Custom laser-cut refractive surfaces are used to reformat a 49-emitter single-mode laser-diode bar into seven groups of aperture-filled arrays of Gaussian beams. A circular far-field pattern was produced with near-symmetrical divergences and low M² values.2 page(s
    corecore