37 research outputs found
Shifted Laplacian multigrid for the elastic Helmholtz equation
The shifted Laplacian multigrid method is a well known approach for
preconditioning the indefinite linear system arising from the discretization of
the acoustic Helmholtz equation. This equation is used to model wave
propagation in the frequency domain. However, in some cases the acoustic
equation is not sufficient for modeling the physics of the wave propagation,
and one has to consider the elastic Helmholtz equation. Such a case arises in
geophysical seismic imaging applications, where the earth's subsurface is the
elastic medium. The elastic Helmholtz equation is much harder to solve than its
acoustic counterpart, partially because it is three times larger, and partially
because it models more complicated physics. Despite this, there are very few
solvers available for the elastic equation compared to the array of solvers
that are available for the acoustic one. In this work we extend the shifted
Laplacian approach to the elastic Helmholtz equation, by combining the complex
shift idea with approaches for linear elasticity. We demonstrate the efficiency
and properties of our solver using numerical experiments for problems with
heterogeneous media in two and three dimensions
LFA-tuned matrix-free multigrid method for the elastic Helmholtz equation
We present an efficient matrix-free geometric multigrid method for the
elastic Helmholtz equation, and a suitable discretization. Many discretization
methods had been considered in the literature for the Helmholtz equations, as
well as many solvers and preconditioners, some of which are adapted for the
elastic version of the equation. However, there is very little work considering
the reciprocity of discretization and a solver. In this work, we aim to bridge
this gap. By choosing an appropriate stencil for re-discretization of the
equation on the coarse grid, we develop a multigrid method that can be easily
implemented as matrix-free, relying on stencils rather than sparse matrices.
This is crucial for efficient implementation on modern hardware. Using two-grid
local Fourier analysis, we validate the compatibility of our discretization
with our solver, and tune a choice of weights for the stencil for which the
convergence rate of the multigrid cycle is optimal. It results in a scalable
multigrid preconditioner that can tackle large real-world 3D scenarios.Comment: 20 page