37 research outputs found

    Shifted Laplacian multigrid for the elastic Helmholtz equation

    Full text link
    The shifted Laplacian multigrid method is a well known approach for preconditioning the indefinite linear system arising from the discretization of the acoustic Helmholtz equation. This equation is used to model wave propagation in the frequency domain. However, in some cases the acoustic equation is not sufficient for modeling the physics of the wave propagation, and one has to consider the elastic Helmholtz equation. Such a case arises in geophysical seismic imaging applications, where the earth's subsurface is the elastic medium. The elastic Helmholtz equation is much harder to solve than its acoustic counterpart, partially because it is three times larger, and partially because it models more complicated physics. Despite this, there are very few solvers available for the elastic equation compared to the array of solvers that are available for the acoustic one. In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation, by combining the complex shift idea with approaches for linear elasticity. We demonstrate the efficiency and properties of our solver using numerical experiments for problems with heterogeneous media in two and three dimensions

    LFA-tuned matrix-free multigrid method for the elastic Helmholtz equation

    Full text link
    We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.Comment: 20 page
    corecore