11 research outputs found

    An Experimental Study of Different Signal Processing Methods on Ultrasonic Velocity Profiles in a Single Phase Flow

    Get PDF
    Ultrasonic velocity profile (UVP) measurement methods have been continuously developed in the field of engineering. A UVP can visualize a fluid flow along a benchmark line. This provides a significant advantage over other conventional methods such as differential pressure, turbine, and vortex. This paper presents an experimental study of using different signal processing methods including autocorrelation (AC), fast Fourier transform (FFT), maximum likelihood estimation (MLE), multiple signal classification (MUSIC), and Estimation of signal parameter via rotational invariance technique (ESPRIT) under diverse situations as the number of pulse repetitions (Nprf), frequency of repetitions (fprf), velocity profiles, computation – time requirements and flowrates. Experimental results express that there is an optimal number and frequency of pulse repetitions for each signal processing method that depended on fprf, Nprf, and flowrate. Moreover, computation-time and statistical tests were verified from experimental results. From the comparisons, MLE was experimentally the best algorithm even though the trade-off of moderate computation-time requirements was realized. However, considering the optimization of both accuracy and computation-time consumption, MLE was determined as the preferred signal processing method based on UVP for estimating flowrate in existing water reactors. &nbsp

    Study on the Optimal Number of Transducers for Pipe Flow Rate Measurement Downstream of a Single Elbow Using the Ultrasonic Velocity Profile Method

    Get PDF
    This paper presents a new estimation method to determine the optimal number of transducers using an Ultrasonic Velocity Profile (UVP) for accurate flow rate measurement downstream of a single elbow. Since UVP can measure velocity profiles over a pipe diameter and calculate the flow rate by integrating these velocity profiles, it is also expected to obtain an accurate flow rate using multiple transducers under nondeveloped flow conditions formed downstream of an elbow. The new estimation method employs a wave number of velocity profile fluctuations along a circle on a pipe cross-section using Fast Fourier Transform (FFT). The optimal number of transducers is estimated based on the sampling theorem. To evaluate this method, a preliminary experiment and numerical simulations using Computational Fluid Dynamics (CFD) are conducted. The evaluating regions of velocity profiles are located at 3 times of a pipe diameter () for the experiment, and 1 and for the simulations downstream of an elbow, respectively. Reynolds numbers for the experiment and simulations are set at and , respectively. These results indicate the efficiency of this new method
    corecore