867 research outputs found

    Genera of fungivorous Phlaeothripinae (Thysanoptera) from dead branches and leaf-litter in Australia

    Get PDF
    An illustrated key is provided for the identification of 39 genera of Thysanoptera-Phlaeothripinae with species that live in association with dead branches and leaf-litter in Australia and are considered to be fungus-feeding. Seven of these gen-era are not previously recorded from this continent, including un-named species of Deplorothrips, Malacothrips, Mystro-thrips, Preeriella and Tylothrips, together with Azaleothrips lepidus Okajima and Terthrothrips ananthakrishnani Kudo. A brief generic diagnosis is provided for each genus, together with comments on systematic problems and numbers of species. Copyright © 2013 Magnolia Press

    Characterisation of the effects of salicylidene acylhydrazide compounds on type three secretion in Escherichia coli O157:H7

    Get PDF
    Recent work has highlighted a number of compounds that target bacterial virulence by affecting gene regulation. In this work, we show that small-molecule inhibitors affect the expression of the type III secretion system (T3SS) of <i>Escherichia coli</i> O157:H7 in liquid culture and when the bacteria are attached to bovine epithelial cells. The inhibition of T3SS expression resulted in a reduction in the capacity of the bacteria to form attaching and effacing lesions. Our results show a marked variation in the ability of four structurally-related compounds to inhibit the T3SS of a panel of isolates. Using transcriptomics, we provide a comprehensive analysis of the conserved- and inhibitor-specific transcriptional responses to the four compounds. These analyses of gene expression show that numerous virulence genes, located on horizontally-acquired DNA elements, are affected by the compounds but the number of genes significantly affected varied markedly between the compounds. Overall, we highlight the importance of assessing the effect of such "anti-virulence" agents on a range of isolates and discuss the possible mechanisms which may lead to the co-ordinate down-regulation of horizontally acquired virulence genes

    The need for multidisciplinarity in specialist training to optimize future patient care

    Get PDF
    Harmonious interactions between radiation, medical, interventional and surgical oncologists, as well as other members of multidisciplinary teams, are essential for the optimization of patient care in oncology. This multidisciplinary approach is particularly important in the current landscape, in which standard-of-care approaches to cancer treatment are evolving towards highly targeted treatments, precise image guidance and personalized cancer therapy. Herein, we highlight the importance of multidisciplinarity and interdisciplinarity at all levels of clinical oncology training. Potential deficits in the current career development pathways and suggested strategies to broaden clinical training and research are presented, with specific emphasis on the merits of trainee involvement in functional multidisciplinary teams. Finally, the importance of training in multidisciplinary research is discussed, with the expectation that this awareness will yield the most fertile ground for future discoveries. Our key message is for cancer professionals to fulfil their duty in ensuring that trainees appreciate the importance of multidisciplinary research and practice

    Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria?

    Get PDF
    Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model Gammaproteobacteria Escherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model Firmicutes Bacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3'→5' exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3' UTR cleavage fragments that contain stabilizing 3' structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5' and 3' ends, efficiently degrading mRNA 3' UTR fragments. Here, we propose that the lack of 5'→3' exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3' UTR ends as the "default" setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3' UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    From silos to synthesis: ensuring interdisciplinary education through synoptic assessment

    Get PDF
    Modular education limits students to narrow perspectives without interdisciplinary connections and leads to in silo learning. We show here how embedding synoptic assessments in the BSc Life Sciences at Brunel University has broken such silos to support holistic understanding and critical thinking

    Filled pauses in Hungarian: Their phonetic form and function

    Get PDF
    Filled pauses are natural occurrences in spontaneous speech and they may turn up at any level of the speech planning process and in a number of functions. The aim of this paper is to find out whether the diverse functions of filled pauses correlate with diverse articulations resulting in diverse acoustic structures. Spontaneous narratives are used as research material. The duration of the filled pauses and the frequency values of their first two formants are analyzed. The most frequent form, schwa, shows function-dependent realizations as confirmed by the durational values and by the second formant values of these vowel-like sounds

    Clinical management and research priorities for high-risk prostate cancer in the UK:meeting report of a multidisciplinary panel in conjunction with the NCRI Prostate Cancer Clinical Studies Localised Subgroup

    Get PDF
    The management of high-risk prostate cancer has become increasingly sophisticated, with refinements in radical therapy and the inclusion of adjuvant local and systemic therapies. Despite this, high-risk prostate cancer continues to have significant treatment failure rates, with progression to metastasis, castrate resistance and ultimately disease-specific death. In an effort to discuss the challenges in this field, the UK National Clinical Research Institute’s Prostate Cancer Clinical Studies localised subgroup convened a multidisciplinary national meeting in the autumn of 2014. The remit of the meeting was to debate and reach a consensus on the key clinical and research challenges in high-risk prostate cancer and to identify themes that the UK would be best placed to pursue to help improve outcomes. This report presents the outcome of those discussions and the key recommendations for future research in this highly heterogeneous disease entity
    corecore