121 research outputs found

    Sustainable bioenergy for climate mitigation: Developing drought-tolerant trees and grasses

    Get PDF
    \u2022 Background and Aims Bioenergy crops are central to climate mitigation strategies that utilize biogenic carbon, such as BECCS (bioenergy with carbon capture and storage), alongside the use of biomass for heat, power, liquid fuels and, in the future, biorefining to chemicals. Several promising lignocellulosic crops are emerging that have no food role \u2013 fast-growing trees and grasses \u2013 but are well suited as bioenergy feedstocks, including Populus, Salix, Arundo, Miscanthus, Panicum and Sorghum. \u2022 Scope These promising crops remain largely undomesticated and, until recently, have had limited germplasm resources. In order to avoid competition with food crops for land and nature conservation, it is likely that future bioenergy crops will be grown on marginal land that is not needed for food production and is of poor quality and subject to drought stress. Thus, here we define an ideotype for drought tolerance that will enable biomass production to be maintained in the face of moderate drought stress. This includes traits that can readily be measured in wide populations of several hundred unique genotypes for genome-wide association studies, alongside traits that are informative but can only easily be assessed in limited numbers or training populations that may be more suitable for genomic selection. Phenotyping, not genotyping, is now the major bottleneck for progress, since in all lignocellulosic crops studied extensive use has been made of next-generation sequencing such that several thousand markers are now available and populations are emerging that will enable rapid progress for drought-tolerance breeding. The emergence of novel technologies for targeted genotyping by sequencing are particularly welcome. Genome editing has already been demonstrated for Populus and offers significant potential for rapid deployment of drought-tolerant crops through manipulation of ABA receptors, as demonstrated in Arabidopsis, with other gene targets yet to be tested. \u2022 Conclusions Bioenergy is predicted to be the fastest-developing renewable energy over the coming decade and significant investment over the past decade has been made in developing genomic resources and in collecting wild germplasm from within the natural ranges of several tree and grass crops. Harnessing these resources for climate-resilient crops for the future remains a challenge but one that is likely to be successful

    Internet- and mobile-based psychological interventions: applications, efficacy, and potential for improving mental health.

    Get PDF
    The majority of mental health disorders remain untreated. Many limitations of traditional psychological interventions such as limited availability of evidence-based interventions and clinicians could potentially be overcome by providing Internet- and mobile-based psychological interventions (IMIs). This paper is a report of the Taskforce E-Health of the European Federation of Psychologists’ Association and will provide an introduction to the subject, discusses areas of application, and reviews the current evidence regarding the efficacy of IMIs for the prevention and treatment of mental disorders. Meta-analyses based on randomized trials clearly indicate that therapist-guided stand-alone IMIs can result in meaningful benefits for a range of indications including, for example, depression, anxiety, insomnia, or posttraumatic stress disorders. The clinical significance of results of purely self-guided interventions is for many disorders less clear, especially with regard to effects under routine care conditions. Studies on the prevention of mental health disorders (MHD) are promising. Blended concepts, combining traditional face-to-face approaches with Internet- and mobile-based elements might have the potential of increasing the effects of psychological interventions on the one hand or to reduce costs of mental health treatments on the other hand. We also discuss mechanisms of change and the role of the therapist in such approaches, contraindications, potential limitations, and risk involved with IMIs, briefly review the status of the implementation into routine health care across Europe, and discuss confidentiality as well as ethical aspects that need to be taken into account, when implementing IMIs. Internet- and mobile-based psychological interventions have high potential for improving mental health and should be implemented more widely in routine care

    Ultra high diluted arsenic reduces spore germination of Alternaria brassicicola and dark leaf spot in cauliflower

    Get PDF
    ABSTRACT A major problem in cauliflower crop is the fungus Alternaria brassicicola, which causes dark leaf spot on Brassicaceae family. The current use of copper salts in agriculture is questioned. In fact, these products present some disadvantages, connected mainly with their deposits in the soil and toxicity on plants. This work investigated the effects of arsenic treatments, in ultra high diluted form (UHD), prepared by a process of repeated dilution and succussion (shaking), through: 1) in vitro germination experiments, where spores of A. brassicicola were suspended in the treatments; 2) in planta experiments and 3) a field trial, where cauliflower plants infected by the fungus were sprayed with treatments. The results showed that ultra high dilutions of arsenic (where no more molecules of this substance are present) were effective in all the experiments, inhibiting spore germination by 60.0%, controlling fungal disease in in planta experiments (relative efficacy of 42.1%), and, in field trial, decreasing the mean infection level in cauliflower heads by 45.7% and 41.6% in artificially inoculated and naturally infected plants, respectively. This is the first study to demonstrate that ultra high dilutions effectively reduce in vitro spore germination and infection of A. brassicicola in cauliflower plants, both under controlled conditions and in the field. Our research is still very experimental, however, in light of the significant results obtained with ultra-diluted arsenic, and given that its extreme high dilution level precludes any toxicity or accumulation in the environment, the use of UHDs could be considered a potential and reliable approach for sustainable agriculture

    Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

    Get PDF
    The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species
    • …
    corecore