44 research outputs found
Sensitivity model study of regional mercury dispersion in the atmosphere
Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 ∕ OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat bogs, etc., is highlighted in this study
Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures
We report photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ∼3.367 eV aimed at elucidation of the nature and origin of the emission and its relationship to the nanostructure morphology. PL spectra in conjunction with localized voltage application in high vacuum and different gas atmospheres show a consistent variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface, which is modified by an adsorbate. PL studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions, both well-known processes for desorption of surface adsorbed oxygen,
show no consistent effects on the surface exciton peak indicating the lack of involvement of oxygen species.
X-ray photoelectron spectroscopy data strongly suggest involvement of adsorbed OH species. X-ray diffraction,
scanning, and transmission electronmicroscopy data are presented also, and the relationship of the surface exciton
peak to the nanostructure morphology is discussed
Chemical cycling and deposition of atmospheric mercury in Polar Regions: review of recent measurements and comparison with models
Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes
Current and future levels of mercury atmospheric pollution on a global scale
An assessment of current and future emissions, air
concentrations, and atmospheric deposition of mercury worldwide is presented
on the basis of results obtained during the performance of the EU GMOS
(Global Mercury Observation System) project. Emission estimates for mercury
were prepared with the main goal of applying them in models to assess
current (2013) and future (2035) air concentrations and atmospheric
deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat
production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the
major anthropogenic sources of Hg emissions to the atmosphere at present.
These sources account for about 37 and 25 % of the total anthropogenic
Hg emissions globally, estimated to be about 2000 t. Emissions in
Asian countries, particularly in China and India, dominate the total
emissions of Hg. The current estimates of mercury emissions from natural
processes (primary mercury emissions and re-emissions), including mercury
depletion events, were estimated to be 5207 t year<sup>−1</sup>, which
represents nearly 70 % of the global mercury emission budget. Oceans are the most
important sources (36 %), followed by biomass burning (9 %). A comparison
of the 2035 anthropogenic emissions estimated for three different scenarios with
current anthropogenic emissions indicates a reduction of these emissions in
2035 up to 85 % for the best-case scenario.
<br><br>
Two global chemical transport models (GLEMOS and ECHMERIT) have been used
for the evaluation of future mercury pollution levels considering future
emission scenarios. Projections of future changes in mercury deposition on a
global scale simulated by these models for three anthropogenic emissions
scenarios of 2035 indicate a decrease in up to 50 % deposition in the
Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario.
<br><br>
The EU GMOS project has proved to be a very important research instrument
for supporting the scientific justification for the Minamata
Convention and monitoring of the implementation of targets of this
convention, as well as the EU Mercury Strategy. This project provided the
state of the art with regard to the development of the latest emission
inventories for mercury, future emission scenarios, dispersion modelling of
atmospheric mercury on a global and regional scale, and source–receptor
techniques for mercury emission apportionment on a global scale
Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere
Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg0 to the atmosphere where it is oxidized to reactive HgII compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized HgI and HgII species postulate their photodissociation back to Hg0 as a crucial step in the atmospheric Hg redox cycle. However, the significance of these photodissociation mechanisms on atmospheric Hg chemistry, lifetime, and surface deposition remains uncertain. Here we implement a comprehensive and quantitative mechanism of the photochemical and thermal atmospheric reactions between Hg0, HgI, and HgII species in a global model and evaluate the results against atmospheric Hg observations. We find that the photochemistry of HgI and HgII leads to insufficient Hg oxidation globally. The combined efficient photoreduction of HgI and HgII to Hg0 competes with thermal oxidation of Hg0, resulting in a large model overestimation of 99% of measured Hg0 and underestimation of 51% of oxidized Hg and ∼66% of HgII wet deposition. This in turn leads to a significant increase in the calculated global atmospheric Hg lifetime of 20 mo, which is unrealistically longer than the 3–6-mo range based on observed atmospheric Hg variability. These results show that the HgI and HgII photoreduction processes largely offset the efficiency of bromine-initiated Hg0 oxidation and reveal missing Hg oxidation processes in the troposphere
Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than modelled rates. We compute absorption cross sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial increase in the modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg emissions are lowered, due to the longer residence time of Hg in soils compared with the ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires further assessment at regional and local scales
Chemical and physical transformations of mercury in the ocean: a review
Mercury is well known as a dangerous neurotoxin enriched in the environment by human
activities. It disperses over the globe, cycling between different environmental media. The ocean
plays an important role in the global mercury cycle, acting both as a dispersion medium and as an
exposure pathway. In this paper, we review the current knowledge on the major physical and
chemical transformations of mercury in the ocean. This review describes the mechanisms and
provides a compilation of available rate constants for the major processes in seawater, including
oxidation and reduction reactions under light and dark conditions, biotic and abiotic
methylation/demethylation, and adsorption by particles. These data could be useful
for the development of transport models describing processes undergone by mercury in the ocean