478 research outputs found

    The birds of Buckeye Lake, Ohio.

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56289/1/MP044.pd

    Contemporary Seismicity in and Around the Yakima Fold-and-Thrust Belt in Eastern Washington

    Get PDF
    We examined characteristics of routinely cataloged seismicity from 1970 to the present in and around the Yakima fold-and-thrust belt (YFTB) in eastern Washington to determine if the characteristics of contemporary seismicity provide clues about regional-scale active tectonics or about more localized, near-surface processes. We employed new structural and hydrologic models of the Columbia River basalts (CRB) and found that one-third to one-half of the cataloged earthquakes occur within the CRB and that these CRB earthquakes exhibit significantly more clustered, and swarmlike, behavior than those outside. These results and inferences from published studies led us to hypothesize that clustered seismicity is likely associated with hydrologic changes in the CRB, which hosts the regional aquifer system. While some general features of the regional groundwater system support this hypothesis, seismicity patterns and mapped long-term changes in groundwater levels and present-day irrigation neither support nor refute it. Regional tectonic processes and crustal-scale structures likely influence the distribution of earthquakes both outside and within the CRB as well. We based this inference on qualitatively assessed alignments between the dominant northwest trends in the geologic structure and the seismicity generally and between specific faults and characteristics of the 2009 Wooded Island swarm and aseismic slip, which is the only cluster studied in detail and the most vigorous since regional monitoring began.USGS-NAGTGeological Science

    Maxwell Fields in Spacetimes Admitting Non-Null Killing Vectors

    Get PDF
    We consider source-free electromagnetic fields in spacetimes possessing a non-null Killing vector field, ξa\xi^a. We assume further that the electromagnetic field tensor, FabF_{ab}, is invariant under the action of the isometry group induced by ξa\xi^a. It is proved that whenever the two potentials associated with the electromagnetic field are functionally independent the entire content of Maxwell's equations is equivalent to the relation \n^aT_{ab}=0. Since this relation is implied by Einstein's equation we argue that it is enough to solve merely Einstein's equation for these electrovac spacetimes because the relevant equations of motion will be satisfied automatically. It is also shown that for the exceptional case of functionally related potentials \n^aT_{ab}=0 implies along with one of the relevant equations of motion that the complementary equation concerning the electromagnetic field is satisfied.Comment: 7 pages,PACS numbers: 04.20.Cv, 04.20.Me, 04.40.+

    A revision of the lamprey genus Ichthyomyzon.

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56280/1/MP035.pd

    Spinning branes in Riemann-Cartan spacetime

    Full text link
    We use the conservation law of the stress-energy and spin tensors to study the motion of massive brane-like objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant world-line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential

    Hamiltonian, Energy and Entropy in General Relativity with Non-Orthogonal Boundaries

    Get PDF
    A general recipe to define, via Noether theorem, the Hamiltonian in any natural field theory is suggested. It is based on a Regge-Teitelboim-like approach applied to the variation of Noether conserved quantities. The Hamiltonian for General Relativity in presence of non-orthogonal boundaries is analysed and the energy is defined as the on-shell value of the Hamiltonian. The role played by boundary conditions in the formalism is outlined and the quasilocal internal energy is defined by imposing metric Dirichlet boundary conditions. A (conditioned) agreement with previous definitions is proved. A correspondence with Brown-York original formulation of the first principle of black hole thermodynamics is finally established.Comment: 29 pages with 1 figur

    Invariant conserved currents in gravity theories: diffeomorphisms and local gauge symmetries

    Full text link
    Previously, we have developed a general method to construct invariant conserved currents and charges in gravitational theories with Lagrangians that are invariant under spacetime diffeomorphisms and local Lorentz transformations. This approach is now generalized to the case when the local Lorentz group is replaced by an arbitrary local gauge group. The particular examples include the Maxwell and Yang-Mills fields coupled to gravity with Abelian and non-Abelian local internal symmetries, and the metric-affine gravity in which the local Lorentz spacetime group is extended to the local general linear group.Comment: 28 pages, Revte

    On quasi-local charges and Newman--Penrose type quantities in Yang--Mills theories

    Get PDF
    We generalize the notion of quasi-local charges, introduced by P. Tod for Yang--Mills fields with unitary groups, to non-Abelian gauge theories with arbitrary gauge group, and calculate its small sphere and large sphere limits both at spatial and null infinity. We show that for semisimple gauge groups no reasonable definition yield conserved total charges and Newman--Penrose (NP) type quantities at null infinity in generic, radiative configurations. The conditions of their conservation, both in terms of the field configurations and the structure of the gauge group, are clarified. We also calculate the NP quantities for stationary, asymptotic solutions of the field equations with vanishing magnetic charges, and illustrate these by explicit solutions with various gauge groups.Comment: 22 pages, typos corrected, appearing in Classical and Quantum Gravit

    Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity

    Full text link
    We investigate properties of a quasi-local mass in a higher-dimensional spacetime having symmetries corresponding to the isomertries of an (n−2)(n-2)-dimensional maximally symmetric space in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant. We assume that the Gauss-Bonnet coupling constant is non-negative. The quasi-local mass was recently defined by one of the authors as a counterpart of the Misner-Sharp quasi-local mass in general relativity. The quasi-local mass is found to be a quasi-local conserved charge associated with a locally conserved current constructed from the generalized Kodama vector and exhibits the unified first law corresponding to the energy-balance law. In the asymptotically flat case, it converges to the Arnowitt-Deser-Misner mass at spacelike infinity, while it does to the Deser-Tekin and Padilla mass at infinity in the case of asymptotically AdS. Under the dominant energy condition, we show the monotonicity of the quasi-local mass for any kk, while the positivity on an untrapped hypersurface with a regular center is shown for k=1k=1 and for k=0k=0 with an additional condition, where k=±1,0k=\pm1,0 is the constant sectional curvature of each spatial section of equipotential surfaces. Under a special relation between coupling constants, positivity of the quasi-local mass is shown for any kk without assumptions above. We also classify all the vacuum solutions by utilizing the generalized Kodama vector. Lastly, several conjectures on further generalization of the quasi-local mass in Lovelock gravity are proposed.Comment: 13 pages, no figures, 1 table; v4, new results added in the asymptotically AdS case, accepted for publication in Physical Review

    Optimal Choices of Reference for a Quasi-local Energy: Spherically Symmetric Spacetimes

    Full text link
    For a given timelike displacement vector the covariant Hamiltonian quasi-local energy expression requires a proper choice of reference spacetime. We propose a program for determining the reference by embedding a neighborhood of the two-sphere boundary in the dynamic spacetime into a Minkowski reference, so that the two sphere is embedded isometrically, and then extremizing the energy to determine the embedding variables. Applying this idea to Schwarzschild spacetime, we found that for each given future timelike displacement vector our program gives a unique energy value. The static observer measures the maximal energy. Applied to the Friedmann-Lemaitre-Robertson-Walker spacetime, we find that the maximum energy value is nonnegative; the associated displacement vector is the unit dual mean curvature vector, and the expansion of the two-sphere boundary matches that of its reference image. For these spherically symmetric cases the reference determined by our program is equivalent to isometrically matching the geometry at the two-sphere boundary and taking the displacement vector to be orthogonal to the spacelike constant coordinate time hypersurface, like the timelike Killing vector of the Minkowski reference.Comment: 12 page
    • …
    corecore