61 research outputs found

    Emergency therapy of maternal and fetal arrhythmias during pregnancy

    No full text
    Atrial premature beats are frequently diagnosed during pregnancy (PR); supraventricular tachycardia (SVT) (atrial tachycardia, AV-nodal reentrant tachycardia, circus movement tachycardia) is less frequently diagnosed. For acute therapy, electrical cardioversion with 50-100 J is indicated in all unstable patients (pts). In stable SVT, the initial therapy includes vagal maneuvers to terminate tachycardias. For short-term management, when vagal maneuvers fail, intravenous adenosine is the first choice drug and may safely terminate the arrhythmia. Ventricular premature beats are also frequently present during PR and benign in most of the pts; however, malignant ventricular tachyarrhythmias (sustained ventricular tachycardia [VT], ventricular flutter [VFlut] or ventricular fibrillation [VF]) may occur. Electrical cardioversion is necessary in all pts who are in hemodynamically unstable situation with life-threatening ventricular tachyarrhythmias. In hemodynamically stable pts, initial therapy with ajmaline, procainamide or lidocaine is indicated. In pts with syncopal VT, VF, VFlut or aborted sudden death, an implantable cardioverter-defibrillator is indicated. In pts with symptomatic bradycardia, a pacemaker can be implanted using echocardiography at any stage of PR. The treatment of the pregnant patient with cardiac arrhythmias requires important modifications of the standard practice of arrhythmia management. The goal of therapy is to protect the patient and fetus through delivery, after which chronic or definitive therapy can be administered

    Concept of the five ′A′s for treating emergency arrhythmias

    No full text
    Cardiac rhythm disturbances such as bradycardia (heart rate < 50/min) and tachycardia (heart rate > 100/min) require rapid therapeutic intervention. The supraventricular tachycardias (SVTs) are sinus tachycardia, atrial tachycardia, AV-nodal reentrant tachycardia, and tachycardia due to accessory pathways. All SVTs are characterized by a ventricular heart rate > 100/min and small QRS complexes (QRS width < 0.12 ms) during the tachycardia. It is essential to evaluate the arrhythmia history, to perform a good physical examination, and to accurately analyze the 12-lead electrocardiogram. A precise diagnosis of the SVT is then possible in more than 90% of patients. In ventricular tachycardia (VT) there are broad QRS complexes (QRS width > 0.12 s). Ventricular flutter and ventricular fibrillation are associated with chaotic electrophysiologic findings. For acute therapy, we will present the new concept of the five ′A′s, which refers to adenosine, adrenaline, ajmaline, amiodarone, and atropine. Additionally, there are the ′B,′ ′C,′ and ′D′ strategies, which refer to beta-blockers, cardioversion, and defibrillation, respectively. The five ′A′ concept allows a safe and effective antiarrhythmic treatment of all bradycardias, tachycardias, SVTs, VT, ventricular flutter, and ventricular fibrillation, as well as of asystole

    Treating critical supraventricular and ventricular arrhythmias

    No full text
    Atrial fibrillation (AF), atrial flutter, AV-nodal reentry tachycardia with rapid ventricular response, atrial ectopic tachycardia and preexcitation syndromes combined with AF or ventricular tachyarrhythmias (VTA) are typical arrhythmias in intensive care patients (pts). Most frequently, the diagnosis of the underlying arrhythmia is possible from the physical examination (PE), the response to maneuvers or drugs and the 12-lead surface electrocardiogram. In unstable hemodynamics, immediate DC-cardioversion is indicated. Conversion of AF to sinus rhythm (SR) is possible using antiarrhythmic drugs. Amiodarone has a conversion rate in AF of up to 80%. Ibutilide represents a class III antiarrhythmic agent that has been reported to have conversion rates of 50-70%. Acute therapy of atrial flutter (Aflut) in intensive care pts depends on the clinical presentation. Atrial flutter can most often be successfully cardioverted to SR with DC-energies < 50 joules. Ibutilide trials showed efficacy rates of 38-76% for conversion of Aflut to SR compared to conversion rates of 5-13% when intravenous flecainide, propafenone or verapamil was administered. In addition, high dose (2 mg) of ibutilide was more effective than sotalol (1.5 mg/kg) in conversion of Aflut to SR (70 versus 19%). Drugs like procainamide, sotalol, amiodarone or magnesium were recommended for treatment of VTA in intensive care pts. However, only amiodarone is today the drug of choice in VTA pts and also highly effective even in pts with defibrillation-resistant out-of-hospital cardiac arrest (CA). There is a general agreement that bystander first aid, defibrillation and advanced life support is essential for neurologic outcome in pts after cardiac arrest due to VTA. Public access defibrillation in the hands of trained laypersons seems to be an ideal approach in the treatment of ventricular fibrillation (VF). The use of automatic external defibrillators (AEDs) by basic life support ambulance providers or first responder (FR) in early defibrillation programs has been associated with a significant increase in survival rates (SRs). However, use of AEDs at home cannot be recommended
    • …
    corecore