77 research outputs found
From people to pixels : visualizing historical university records
The world’s oldest universities have started digitizing their historical student/staff records. Such data collections have the potential to provide valuable insights into the early educated population’s social and cultural profile and inform research regarding the formation of academic networks. While textual, web-based search interfaces provide universal access to these collections for scholars and the general public, they can only provide narrow views on a record-by-record basis. This article presents and critically discusses a pilot study which uses an off-the-shelf visualization tool as a means to enable the interactive exploration of patterns within the Biographical Register of the University of St Andrews (1747–1897) (BRUSA). Our visualizations provide insights into the history of the University unobtainable through close reading and at the same time highlight the limitations of standard visualization tools when used in the context of diverse historical records. Drawing from ongoing advances in visualization and digital humanities (DH) research, we examine our pilot study by focusing on two main issues: (1) How to make visible the situatedness of historical (biographical) record collections? (2) How to inform the critical interpretation of cultural collections through visualization?Publisher PD
The technological invisible — image making and dynamics of power
In this paper we explore the dynamics of power involved in the representation of digital devices. We reflect on a series of images produced by Amazon and Apple and suggest that their role as instruments of power is not defined by the companies’ financial might. We argue that these images are bound in a matrix, the locus of which resides in the representation of the technological invisible, elements of technology that are supra-sensible such as software, data, and wireless infrastructure. We use a research through design approach to analyse how representing invisible aspects of technology involves a series of decisions, through which agendas are embedded to influence the way we imagine the technology to operate and integrate in daily lives. We suggest that these dynamics are not the preserve of traditionally powerful actors, but that can be used by designers to reimagine technology
Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses.
BACKGROUND: Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. METHODS AND FINDINGS: A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. CONCLUSIONS: Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.US NIH (Grant ID: R37CA070867), Ingram Professorship, Anne Potter Wilson , National Institutes of Health (Grant IDs: R25CA160056-03, U19CA148065, U19CA148107, U19CA148127, U19CA148537, Cancer Research UK, Prostate Cancer UK, The Institute of Cancer Research, Royal Marsden Biomedical Research Centre, National Institute of Health Research (Grant ID: C5047/A17528)This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pmed.100211
Investigating the genetic relationship between Alzheimer's disease and cancer using GWAS summary statistics.
Growing evidence from both epidemiology and basic science suggest an inverse association between Alzheimer's disease (AD) and cancer. We examined the genetic relationship between AD and various cancer types using GWAS summary statistics from the IGAP and GAME-ON consortia. Sample size ranged from 9931 to 54,162; SNPs were imputed to the 1000 Genomes European panel. Our results based on cross-trait LD Score regression showed a significant positive genetic correlation between AD and five cancers combined (colon, breast, prostate, ovarian, lung; r g = 0.17, P = 0.04), and specifically with breast cancer (ER-negative and overall; r g = 0.21 and 0.18, P = 0.035 and 0.034) and lung cancer (adenocarcinoma, squamous cell carcinoma and overall; r g = 0.31, 0.38 and 0.30, P = 0.029, 0.016, and 0.006). Estimating the genetic correlation in specific functional categories revealed mixed positive and negative signals, notably stronger at annotations associated with increased enhancer activity. This suggests a role of gene expression regulators in the shared genetic etiology between AD and cancer, and that some shared variants modulate disease risk concordantly while others have effects in opposite directions. Due to power issues, we did not detect cross-phenotype associations at individual SNPs. This genetic overlap is not likely driven by a handful of major loci. Our study is the first to examine the co-heritability of AD and cancer leveraging large-scale GWAS results. The functional categories highlighted in this study need further investigation to illustrate the details of the genetic sharing and to bridge between different levels of associations
Functional variants in DCAF4 associated with lung cancer risk in European populations.
Cullin-RING ubiquitin ligases (CRLs) responsible for substrate specificity of ubiquitination play a key role in cell-cycle control and DNA damage response. In this study, we assessed associations between 16 599 SNPs in 115 CRL genes and lung cancer risk by using summary data of six published genome-wide association studies (GWASs) of 12 160 cases and 16 838 cases of European ancestry. As a result, we identified three independent SNPs in DCAF4 (rs117781739, rs12587742 and rs2240980) associated with lung cancer risk (odds ratio = 0.91, 1.09 and 1.09, respectively; 95% confidence interval = 0.88-0.95, 1.05-1.14 and 1.05-1.13, respectively; and P = 3.99 × 10-6, 4.97 × 10-5 and 1.44 × 10-5, respectively) after multiple comparison correction by a false discovery rate <0.05. Since SNP rs12587742 is located within the promoter region and one CpG island of DCAF4, we further performed in silico functional analyses and found that the rs12587742 variant A allele was associated with an increased mRNA expression (P = 2.20 × 10-16, 1.79 × 10-13 and 0.001 in blood cells, normal lung tissues and tumor tissues of lung squamous carcinoma, respectively) and a decreased methylation status (P = 2.48 × 10-9 and 0.032 in adipose and lung tumor tissues, respectively). Moreover, evidence from differential expression analyses further supported an oncogenic effect of DCAF4 on lung cancer, with higher mRNA levels in both lung squamous carcinoma and adenocarcinoma (P = 4.48 × 10-11 and 1.22 × 10-9, respectively) than in adjacent normal tissues. Taken together, our results suggest that rs12587742 is associated with an increased lung cancer risk, possibly by up-regulating mRNA expression and decreasing methylation status of DCAF4
Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals.
Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis
Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers
Abstract: Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence
Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations
Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR
- …