110 research outputs found

    A Novel High-Speed Architecture for Integrating Multiple DDoS Countermeasure Mechanisms Using Reconfigurable Hardware

    Get PDF
    In this paper, we proposed a novel high-speed architecture to incorporate multiple stand-alone DDoS countering mechanisms. The architecture separates DDoS filtering mechanisms, which are algorithms, out of packet decoder, which is the basement. The architecture not only helps developers to give more concentration on optimizing algorithms but also integrate multiple algorithms to achieve more efficient DDoS defense mechanism. The architecture is implemented on reconfigurable hardware, which helps algorithms to be flexibly changed or updated. We implemented and experimented the system using NetFPGA 10G board with incorporation of Port Ingress/Egress Filtering and Hop-Count Filtering to classify IP spoofing packets. The synthesis results show that the system runs at 118.907 MHz, utilizes 38.99% Registers, and 44.75% BlockRAMs/FIFOs of the NetFPGA 10G board. The system achieves the detection rate of 100% with false negative rate at 0%, and false positive rate closed to 0.16%. The experimental results prove that the system achieves packet decoding throughput at 9.869 Gbps in half-duplex mode and 19.738 Gbps in full-duplex mode

    Dynamic stiffness method for free vibrations analysis of partial fluid-filled orthotropic circular cylindrical shells

    Get PDF
    Free vibrations of partial fluid-filled orthotropic circular cylindrical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on theFirst Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of cylindrical shells partially and completely filled with fluid under various boundary conditions. The vibration frequencies for different filling ratios of cylindrical shells are obtained and compared with existing experimental and theoretical results which indicate that the fluid filling can reduce significantly the natural frequencies of studiedcylindrical shells. Detailed parametric analysis is carried out to show the effects of some geometrical and material parameters on the natural frequencies of orthotropic cylindrical shells. The advantages of this current solution consist in fast convergence, low computational cost and high precision validating for all frequency ranges

    FPGA-Based Multiple DDoS Countermeasure Mechanisms System Using Partial Dynamic Reconfiguration

    Get PDF
    In this paper, we propose a novel FPGA-based high-speed DDoS countermeasure system that can flexibly adapt to DDoS attacks while still maintaining system performance. The system includes a packet decoder module and multiple DDoS countermeasure mechanisms. We apply dynamic partial reconfiguration technique in this system so that the countermeasure mechanisms can be flexibly changed or updated on-the-fly. The proposed system architecture separates DDoS protection modules (which implement DDoS countermeasure techniques) from the packet decoder module. By using this approach, one DDoS protection module can be reconfigured without interfering with other modules. The proposed system is implemented on a NetFPGA 10G board. The synthesis results show that the system can work at up to 116.782 MHz while utilizing up to 39.9% Registers and 49.85% BlockRAM of the Xilinx Virtex xcv5tx240t FPGA device on the NetFPGA 10G board. The system achieves the detection rate of 100% with the false negative rate at 0% and false positive rate closed to 0.16%. The prototype system achieves packet decoding throughput at 9.869 Gbps in half-duplex mode and 19.738 Gbps in full-duplex mode

    Bit-Interleaved Coded Modulation Systems with Iterative Decoding and Partial Reusing QAM Signal Points

    Get PDF
    A new method of reusing a subset of an M-QAM signal constellation is presented for Bit-Interleaved Coded Modulation systems with Iterative Decoding (BICM-ID). In addition to the remapping of high-energy signals to low-energy signals in order to save the average signal energy as a shaping technique known so far, a new scheme of remapping low-energy signals to high-energy signals is proposed in order to gain the equivalent distance when decoding bits, often called the Squared Euclidean Weights (SEW). Numerical analysis and simulation results show that the partial reuse of the signals in the BICM-ID system with 16-QAM can improve the system performance in terms of lowering the bit error rate in the error floor region

    Identification of rose black spot pathogen in Sa Đéc city, Đồng Tháp province of Vietnam

    Get PDF
    Black spot is one of the most destructive diseases of roses, causing premature defoliation, thus progressively weakening the plant and even leading to death. This study aimed at identifying the pathogen causing black spot on Rosa chinensis Jacq. cv. nhung (Hồng Nhung) and R. chinensis Jacq. var. minima (Hồng Tỉ Muội) in Sa Đéc city, Đồng Tháp province, Vietnam, using a combination of conidia morphology and pathogenicity tests including detached leaf and intact plant techniques. A total of 32 infected leaf samples with the black spot typical symptoms were collected from six rose cultivation areas. The morphological characterization of the conidia obtained from these samples was elliptical, hyaline, two-celled and had vacuole-like structures, similar to those produced by Diplocarpon. In pathogenicity test, the symptoms were observed on cv. nhung but not var. minima in the detached leaf technique while symptoms were observed on both cultivars in intact plants technique. These included black spots with perforated edges, aggregating into bigger patches. The infected leaves could yellow and defoliate at 21 days after inoculation. Compared to the previous pathogenic studies and description of diseases on roses, the fungal pathogen was identified as fungus Diplocarpon rosae

    Disinfection performance of an ultraviolet lamp: a CFD investigation

    Get PDF
    Ultraviolet (UV)-based devices have shown their effectiveness on various germicidal purposes. To serve their design optimisation, the disinfection effectiveness of a vertically cylindrical UV lamp, whose wattage ranges from P = 30 − 100 W, is numerically investigated in this work. The UV radiation is solved by the Finite Volume Method together with the Discrete Ordinates model. Various results for the UV intensity and its bactericidal effects against several popular virus types, i.e., Corona-SARS, Herpes (type 2), and HIV, are reported and analysed in detail. Results show that the UV irradiance is greatly dependent on the lamp power. Additionally, it is indicated that the higher the lamp wattage employed, the larger the bactericidal rate is observed, resulting in the greater effectiveness of the UV disinfection process. Nevertheless, the wattage of P ≤ 100W is determined to be insufficient for an effective disinfection performance in a whole room; higher values of power must hence be considered in case intensive sterilization is required. Furthermore, the germicidal effect gets reduced with the viruses less sensitive to UV rays, e.g, the bactericidal rate against the HIV virus is only ∼8.98% at the surrounding walls

    FLAVONOIDS AND TRITERPENOIDS FROM CALLISTEMON CITRINUS AND THEIR INHIBITORY EFFECT ON NO PRODUCTION IN LPS-STIMULATED RAW264.7 MACROPHAGES

    Get PDF
    Phytochemical investigation of the leaves and stems of Callistemon citrinus (Curtis) Skeels led to the isolation of 12 flavonoid and triterpenoid compounds,  including one new flavonoid, callistine A (1) and six known flavonoids 6,7- dimethyl-5,7-dihydroxy-4’-methoxy flavone (2), astragalin (3), quercetin (4), catechin (5), eucalyptin (6), and 8-demethyleucalyptin (7), along with 5 triterpenoids, 3-β-acetylmorolic acid (8), 3β-hydroxy-urs-11-en-13(28)-olide (9), betulinic acid (10), diospyrolide (11) and ursolic acid (12). Their chemical structures were determined from the spectroscopic evidences counting 1D- and 2D-NMR and HR-MS data. All the isolated compounds were examined for their anti-inflammatory activity against LPS-activated NO production in macrophage RAW264.7 cells. Among them, quercetin (4) and 3β-hydroxy-urs-11-en-13(28)-olide (9) showed potential inhibition activity in nitric oxide (NO)  production in RAW264.7 cells exposed to LPS

    PHENOLIC COMPOUNDS FROM CALLISTEMON CITRINUS LEAVES AND STEMS

    Get PDF
    In the search for bioactive constituents from Vietnamese plants,  the leaves and stems of Callistemon citrinus (Curtis) Skeels were selected for chemical investigation. Phytochemical analysis of plant led to the isolation of eight phenolic compounds including two flavonoids (eucalyptine (1) and 8-demethyleucalyptine (2)), two alcohols (blumenol A (3), n-tetratriacontanol (4)), three benzoic acid derivatives (acid gallic (5), methyl gallate (6) protocatechuic acid (7)), one sterol (b-sitosterol (8)), and along with one sesquiterpene (2,6,10-bisabolatriene (9)). The structures of the natural compounds were determined by spectroscopic evidences including 1D- and 2D-NMR and ESI-MS

    FIRST - Flexible interactive retrieval SysTem for visual lifelog exploration at LSC 2020

    Get PDF
    Lifelog can provide useful insights of our daily activities. It is essential to provide a flexible way for users to retrieve certain events or moments of interest, corresponding to a wide variation of query types. This motivates us to develop FIRST, a Flexible Interactive Retrieval SysTem, to help users to combine or integrate various query components in a flexible manner to handle different query scenarios, such as visual clustering data based on color histogram, visual similarity, GPS location, or scene attributes. We also employ personalized concept detection and image captioning to enhance image understanding from visual lifelog data, and develop an autoencoderlike approach for query text and image feature mapping. Furthermore, we refine the user interface of the retrieval system to better assist users in query expansion and verifying sequential events in a flexible temporal resolution to control the navigation speed through sequences of images
    corecore