20,285 research outputs found
Linear degree growth in lattice equations
We conjecture recurrence relations satisfied by the degrees of some
linearizable lattice equations. This helps to prove linear growth of these
equations. We then use these recurrences to search for lattice equations that
have linear growth and hence are linearizable
Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps
Closed form expressions in terms of multi-sums of products have been given in
\cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de
Vries and potential Korteweg-de Vries maps obtained as so-called
-traveling wave reductions of the corresponding partial difference
equations. We prove the involutivity of these integrals with respect to
recently found symplectic structures for those maps. The proof is based on
explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page
Probing topology by "heating": Quantized circular dichroism in ultracold atoms
We reveal an intriguing manifestation of topology, which appears in the
depletion rate of topological states of matter in response to an external
drive. This phenomenon is presented by analyzing the response of a generic 2D
Chern insulator subjected to a circular time-periodic perturbation: due to the
system's chiral nature, the depletion rate is shown to depend on the
orientation of the circular shake. Most importantly, taking the difference
between the rates obtained from two opposite orientations of the drive, and
integrating over a proper drive-frequency range, provides a direct measure of
the topological Chern number of the populated band (): this "differential
integrated rate" is directly related to the strength of the driving field
through the quantized coefficient . Contrary to the
integer quantum Hall effect, this quantized response is found to be non-linear
with respect to the strength of the driving field and it explicitly involves
inter-band transitions. We investigate the possibility of probing this
phenomenon in ultracold gases and highlight the crucial role played by edge
states in this effect. We extend our results to 3D lattices, establishing a
link between depletion rates and the non-linear photogalvanic effect predicted
for Weyl semimetals. The quantized circular dichroism revealed in this work
designates depletion-rate measurements as a universal probe for topological
order in quantum matter.Comment: 10 pages, 5 figures (including Sup. Mat.). Revised version, accepted
for publicatio
Direct nonadiabatic quantum dynamics simulations of the photodissociation of phenol
Gaussian wavepacket methods are becoming popular for the investigation of nonadiabatic molecular dynamics. In the present work, a recently developed efficient algorithm for the Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method has been used to describe the multidimensional photodissociation dynamics of phenol including all degrees of freedom. Full-dimensional quantum dynamic calculations including for the first time six electronic states (1ππ, 11ππ*, 11πσ*, 21πσ*, 21ππ*, 31ππ*), along with a comparison to an existing analytical 4-state model for the potential energy surfaces are presented. Including the fifth singlet excited state is shown to have a significant effect on the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. State population and flux analysis from the DD-vMCG simulations of phenol provided further insights into the decay mechanism, confirming the idea of rapid relaxation to the ground state through the 1ππ/11πσ* conical intersection
Kaon photoproduction on the nucleon: Contributions of kaon-hyperon final states to the magnetic moment of the nucleon
By using the Gerasimov-Drell-Hearn (GDH) sum rule and an isobaric model of
kaon photoproduction, we calculate contributions of kaon-hyperon final states
to the magnetic moment of the proton and the neutron. We find that the
contributions are small. The approximation of sigma_{TT'} by sigma_{T} clearly
overestimates the value of the GDH integral. We find a smaller upper bound for
the contributions of kaon-hyperon final states to the proton's anomalous
magnetic moment in kaon photoproduction, and a positive contribution for the
square of the neutron's magnetic moment.Comment: 6 pages, revtex, 1 postscript figure, to appear in Phys. Rev.
Emerging trend in second messenger communication and myoendothelial feedback
Over the past decade, second messenger communication has emerged as one of the intriguing topics in the field of vasomotor control. Of particular interest has been the idea of second messenger flux from smooth muscle to endothelium initiating a feedback response that attenuates constriction. Mechanistic details of the precise signaling cascade have until recently remained elusive. In this perspective, we introduce readers to how myoendothelial gaps junctions could enable sufficient inositol trisphosphate flux to initiate endothelial Ca2+ events that activate Ca2+ sensitive K+ channels. The resulting hyperpolarizing current would in turn spreads back through the same myoendothelial gap junctions to moderate smooth muscle depolarization and constriction. In discussing this defined feedback mechanism, this brief manuscript will stress the importance of microdomains and of discrete cellular signaling
Phenomenology of the Equivalence Principle with Light Scalars
Light scalar particles with couplings of sub-gravitational strength, which
can generically be called 'dilatons', can produce violations of the equivalence
principle. However, in order to understand experimental sensitivities one must
know the coupling of these scalars to atomic systems. We report here on a study
of the required couplings. We give a general Lagrangian with five independent
dilaton parameters and calculate the "dilaton charge" of atomic systems for
each of these. Two combinations are particularly important. One is due to the
variations in the nuclear binding energy, with a sensitivity scaling with the
atomic number as . The other is due to electromagnetism. We compare
limits on the dilaton parameters from existing experiments.Comment: 5 page
A portable platform for accelerated PIC codes and its application to GPUs using OpenACC
We present a portable platform, called PIC_ENGINE, for accelerating
Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as
Graphic Processing Units (GPUs). The aim of this development is efficient
simulations on future exascale systems by allowing different parallelization
strategies depending on the application problem and the specific architecture.
To this end, this platform contains the basic steps of the PIC algorithm and
has been designed as a test bed for different algorithmic options and data
structures. Among the architectures that this engine can explore, particular
attention is given here to systems equipped with GPUs. The study demonstrates
that our portable PIC implementation based on the OpenACC programming model can
achieve performance closely matching theoretical predictions. Using the Cray
XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we
show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the
one on an Intel Sandybridge 8-core CPU by a factor of 3.4
- …