131,667 research outputs found
The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach
Wireless sensor networks consist of a large number of distributed sensor
nodes so that potential risks are becoming more and more unpredictable. The new
entrants pose the potential risks when they move into the secure zone. To build
a door wall that provides safe and secured for the system, many recent research
works applied the initial authentication process. However, the majority of the
previous articles only focused on the Central Authority (CA) since this leads
to an increase in the computation cost and energy consumption for the specific
cases on the Internet of Things (IoT). Hence, in this article, we will lessen
the importance of these third parties through proposing an enhanced
authentication mechanism that includes key management and evaluation based on
the past interactions to assist the objects joining a secured area without any
nearby CA. We refer to a mobility dataset from CRAWDAD collected at the
University Politehnica of Bucharest and rebuild into a new random dataset
larger than the old one. The new one is an input for a simulated authenticating
algorithm to observe the communication cost and resource usage of devices. Our
proposal helps the authenticating flexible, being strict with unknown devices
into the secured zone. The threshold of maximum friends can modify based on the
optimization of the symmetric-key algorithm to diminish communication costs
(our experimental results compare to previous schemes less than 2000 bits) and
raise flexibility in resource-constrained environments.Comment: 27 page
Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection
In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116
- …