4 research outputs found

    Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting.

    No full text
    To study the effect of freezing, in vitro culture (IVC) and grafting to chorioallantoic membrane (CAM) on follicle outcomes in human ovarian tissue. An experimental study. University-based research laboratory. Fresh and cryopreserved ovarian tissue from 10 patients was donated to research with their consent and institutional review board approval. Fresh and frozen-thawed ovarian cortical pieces were in vitro-cultured and compared (fresh-IVC vs FT-IVC). The FT-IVC fragments were then examined against fragments grafted to CAM (FT-CAM). After both IVC and CAM grafting, ovarian cortical pieces (4×2×1 mm) were analyzed on days 0, 1, and 6. Follicle analyses included histology (count and classification) and immunohistochemistry (Ki67 [proliferation], caspase-3 [apoptosis], 1A and 1B light chain 3B [autophagy], p-Akt, FOXO1, and p-rpS6 [PI3K activation]). Droplet digital polymerase chain reaction further explored expression of PI3K pathway- and oocyte-related genes in tissue sections. No major differences were detected between fresh-IVC and FT-IVC tissues in any conducted analyses. Although a significant drop was observed in primordial follicle (PF) proportions in the fresh-IVC and FT-IVC groups (d0 vs. d6, P.05). The PF rates were also significantly higher in the FT-CAM group than the FT-IVC group on d6 (P=.02). Importantly, avian erythrocytes were already present in 30% of implants from d1. Apoptotic and autophagic follicle rates increased during IVC (P<.008), but remained significantly lower in the FT-CAM group (P<.01), confirming superior follicle preservation in CAM-grafted tissue. Upregulation of the PI3K/FOXO pathway was established in the IVC groups, demonstrating PF activation, whereas significant pathway downregulation was detected in the FT-CAM group (P<.03). The droplet digital polymerase chain reaction tests confirmed oocyte growth during IVC and follicle autophagy in all groups; however, the PI3K pathway appeared to be differentially modulated in tissues and follicles. In vitro culture induces PF depletion with no additional impact of freezing. Grafting to CAM preserves the PF pool by curbing follicle activation, apoptosis, and autophagy, probably thanks to rapid graft revascularization and/or the circulating embryonic antimüllerian hormone. These findings highlight the importance of enhancing neoangiogenesis in ovarian grafts and investigating the potential benefits of administering antimüllerian hormone to prevent PF burnout

    Efficacy of Tocilizumab in Limbic Encephalitis with Anti-CASPR2 Antibodies

    No full text
    We report the case of a 64-year-old man who presented with subacute memory, balance impairment, behavioral and mood changes, and epileptic seizures. Magnetic resonance imaging (MRI) showed bilateral hippocampal abnormalities. Brain [18F]-FDG fluorodeoxyglucose positron emission tomography (PET) revealed hypometabolism in both the temporal lobe as well as in the left insular and parietal regions. The clinical and neuroradiological picture and the detection of anti-CASPR2 antibodies in serum oriented the diagnosis towards autoimmune limbic encephalitis. Intravenous high-dose steroid and immunoglobulin treatments were ineffective. We did not use rituximab for the presence of antibodies to HbcAg positivity. Tocilizumab given intravenously 8 mg/kg once a month for six months and then subcutaneously 162 mg every week for six months resulted in clinical and neuroradiological improvement. These data support the efficacy of tocilizumab in autoimmune limbic encephalitis associated with anti-CASPR2 antibodies, which has been sporadically reported in the literature
    corecore