1,116 research outputs found

    Binary matroids and local complementation

    Full text link
    We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.Comment: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication versio

    Splitting cubic circle graphs

    Full text link
    We show that every 3-regular circle graph has at least two pairs of twin vertices; consequently no such graph is prime with respect to the split decomposition. We also deduce that up to isomorphism, K_4 and K_{3,3} are the only 3-connected, 3-regular circle graphs.Comment: 18 pages, 15 figure

    Weighted interlace polynomials

    Full text link
    The interlace polynomials introduced by Arratia, Bollobas and Sorkin extend to invariants of graphs with vertex weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G)=q(G-a)+q(G^{ab}-b)+((x-1)^{2}-1)q(G^{ab}-a-b) that lacks the last term. It follows that interlace polynomial computations can be represented by binary trees rather than mixed binary-ternary trees. Binary computation trees provide a description of q(G)q(G) that is analogous to the activities description of the Tutte polynomial. If GG is a tree or forest then these "algorithmic activities" are associated with a certain kind of independent set in GG. Three other novel properties are weighted pendant-twin reductions, which involve removing certain kinds of vertices from a graph and adjusting the weights of the remaining vertices in such a way that the interlace polynomials are unchanged. These reductions allow for smaller computation trees as they eliminate some branches. If a graph can be completely analyzed using pendant-twin reductions then its interlace polynomial can be calculated in polynomial time. An intuitively pleasing property is that graphs which can be constructed through graph substitutions have vertex-weighted interlace polynomials which can be obtained through algebraic substitutions.Comment: 11 pages (v1); 20 pages (v2); 27 pages (v3); 26 pages (v4). Further changes may be made before publication in Combinatorics, Probability and Computin
    • …
    corecore