5 research outputs found

    Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar

    No full text
    Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of Anopheles-Wolbachia interactions in Southeast Asia.</p

    Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar

    No full text
    Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of Anopheles-Wolbachia interactions in Southeast Asia.</p

    Natural Wolbachia infections in malaria vectors in Kayin state, Myanmar

    No full text
    Background : Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods : Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed by quantitative real-time PCR. Results: Malaria vectors were identified in the Funestus, Maculatus and Leucosphyrus Groups . Wolbachia were detected in 6/6 Anopheles species and in 5/10 villages. Mean prevalence of Wolbachia infection was 2.7% (95%CI= [1.3; 4.9]). The median Wolbachia load was seven orders of magnitude less in naturally infected malaria vectors than in artificially infected laboratory-reared Aedes aegypti . Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in Africa. Conclusion: Natural Wolbachia infections are common and widespread in malaria vectors in Kayin state, Myanmar. Their effects on Anopheles mosquitoes and malaria transmission is yet to be determined

    Natural Wolbachia infections in malaria vectors in Kayin state, Myanmar

    No full text
    Background : Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods : Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed by quantitative real-time PCR. Results: Malaria vectors were identified in the Funestus, Maculatus and Leucosphyrus Groups . Wolbachia were detected in 6/6 Anopheles species and in 5/10 villages. Mean prevalence of Wolbachia infection was 2.7% (95%CI= [1.3; 4.9]). The median Wolbachia load was seven orders of magnitude less in naturally infected malaria vectors than in artificially infected laboratory-reared Aedes aegypti . Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in Africa. Conclusion: Natural Wolbachia infections are common and widespread in malaria vectors in Kayin state, Myanmar. Their effects on Anopheles mosquitoes and malaria transmission is yet to be determined

    Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar

    No full text
    Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88–96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented
    corecore