10 research outputs found
Phylogenetic approaches to identifying fragments of the same gene, with application to the wheat genome.
As the time and cost of sequencing decrease, the number of available genomes and transcriptomes rapidly increases. Yet the quality of the assemblies and the gene annotations varies considerably and often remains poor, affecting downstream analyses. This is particularly true when fragments of the same gene are annotated as distinct genes, which may cause them to be mistaken as paralogs.
In this study, we introduce two novel phylogenetic tests to infer non-overlapping or partially overlapping genes that are in fact parts of the same gene. One approach collapses branches with low bootstrap support and the other computes a likelihood ratio test. We extensively validated these methods by (i) introducing and recovering fragmentation on the bread wheat, Triticum aestivum cv. Chinese Spring, chromosome 3B; (ii) by applying the methods to the low-quality 3B assembly and validating predictions against the high-quality 3B assembly; and (iii) by comparing the performance of the proposed methods to the performance of existing methods, namely Ensembl Compara and ESPRIT. Application of this combination to a draft shotgun assembly of the entire bread wheat genome revealed 1221 pairs of genes that are highly likely to be fragments of the same gene. Our approach demonstrates the power of fine-grained evolutionary inferences across multiple species to improving genome assemblies and annotations.
An open source software tool is available at https://github.com/DessimozLab/esprit2.
Supplementary data are available at Bioinformatics online
OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more.
OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org
iHam and pyHam: visualizing and processing hierarchical orthologous groups.
The evolutionary history of gene families can be complex due to duplications and losses. This complexity is compounded by the large number of genomes simultaneously considered in contemporary comparative genomic analyses. As provided by several orthology databases, hierarchical orthologous groups (HOGs) are sets of genes that are inferred to have descended from a common ancestral gene within a species clade. This implies that the set of HOGs defined for a particular clade correspond to the ancestral genes found in its last common ancestor. Furthermore, by keeping track of HOG composition along the species tree, it is possible to infer the emergence, duplications and losses of genes within a gene family of interest. However, the lack of tools to manipulate and analyse HOGs has made it difficult to extract, display and interpret this type of information. To address this, we introduce interactive HOG analysis method, an interactive JavaScript widget to visualize and explore gene family history encoded in HOGs and python HOG analysis method, a python library for programmatic processing of genes families. These complementary open source tools greatly ease adoption of HOGs as a scalable and interpretable concept to relate genes across multiple species.
iHam's code is available at https://github.com/DessimozLab/iHam or can be loaded dynamically. pyHam's code is available at https://github.com/DessimozLab/pyHam and or via the pip package 'pyham'
OMA orthology in 2024: improved prokaryote coverage, ancestral and extant GO enrichment, a revamped synteny viewer and more in the OMA Ecosystem.
In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org
Mixed-effects analyses of rank-ordered data
latent trait models, latent class analysis, probabilistic choice models, nominal categories model, Luce's choice model,