27 research outputs found

    Durability of LDPE/UHMWPE Composites under Accelerated Degradation

    No full text
    This study presents a detailed analysis of thermal and radiation resistances of low density polyethylene (LDPE)/ultra-high molecular weight polyethylene (UHMWPE) blends containing hydroxyapatite as functional filler and rosemary acting as antioxidant against oxidative degradation. Three main procedures, chemiluminescence (CL), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), were applied for the determination of the degree of degradation when these materials are subjected to heat and radiation action. The crystallinity was also assessed for the characterization of diffusion peculiarities. The contributions of the mixing components are discussed based on their oxidation strength. The activation energies required for the oxidative degradation of the studied formulations were calculated

    Stabilization Activity of Kelp Extract in Ethylene–Propylene Rubber as Safe Packaging Material

    No full text
    This paper presents the stabilization effects of the solid extract of kelp (Ascophyllum nodosum) on an engineering elastomer, ethylene–propylene copolymer (EPR), which may be used as packaging material. Progressive increase in additive loadings (0.5, 1, and 2 phr) increases the oxidation induction time for thermally aged rubber at 190 °C from 10 min to 30 min for pristine material and modified polymer by adding 2 phr protection powder. When the studied polymer is γ-irradiated at 50 and 100 kGy, the onset oxidation temperatures increase as a result of blocking the oxidation reactivity of free radicals. The stabilization effect occurs through the activity of alginic acid, which is one of the main active components associated with alginates. The accelerated degradation caused by γ-exposure advances more slowly when the kelp extract is present. The OOT value for the oxidation of EPR samples increases from 130 °C to 165 °C after the γ-irradiation of pristine and modified (2 phr of kelp powder) EPR, respectively. The altered oxidation state of EPR samples by the action of γ-rays in saline serum is faster in neat polymer than in stabilized material. When the probes are placed in physiological serum and irradiated at 25 kGy, the OOT value for neat EPR (145 °C) is much lower than the homologous value for the polymer samples protected by kelp extract (153 °C for the concentration of 0.5 phr, 166 °C for the concentration of 1 phr, and 185 °C for the concentration of 2 phr)

    Stability Efficiencies of POSS and Microalgae Extracts on the Durability of Ethylene-Propylene-Diene Monomer Based Hybrids

    No full text
    The EPDM (ethylene-propylene-diene monomer) hybrids with improved thermal and radiation strengths containing 1 and 5 phr of polyhedral oligomeric silsesquioxane (vinyl-POSS, Ov-POSS) and/or 2 phr of microalgae (Chlorella vulgaris (CV) and Spirulinaplatensis (SP)) powders were investigated in respect to their thermal stability after γ-irradiation. The material durability under accelerated degradation was qualified by chemiluminescence and gelation, which prove the contribution of inorganic filler and microalgae extracts on the increase of hybrid thermal stability, as well as the interaction between added components (POSS and CV or SP). The activation energies and the durabilities under accelerated degradation were calculated, indicating their suitable usage as appropriate materials in various applications. The reported results indicate the improvement effect of both microalgal powders on the oxidation strength, but the contribution of Spirulinaplatensis grabs attention on its efficient effects upon the prevention of degradation under accelerated aging conditions. The thermal performances of the tested EPDM based hybrids are remarkably ameliorated, if the certain formulation includes Ov-POSS (5 phr) and Spirulinaplatensis (2 phr), certifying its suitability for the pertinent applications

    Irradiation Effects in Polymer Composites for Their Conversion into Hybrids

    No full text
    In this paper several aspects of profound modifications caused by high energy exposures are presented as possible candidates for the efficient adjusting processing of polymer materials. The class of hybrid composites receives special attention due to the large spectrum of formulations, where the interphase interaction decisively influences the material properties. They represent potential start points for the intimate uniformity of hybrid morphologies. Their radiation processing turns composites onto hybrid morphology with expected features, because the transferred energy is spent for the modification of components and for their compatibility. The essential changes achieved in radiation processed composites explain the new material behavior and durability based on the peculiar restructuring of polymer molecules that occurred in the polymer phase. During high energy irradiation, the interaction between intermediates born in the constitutive phases may convert the primary composites into hybrids, integrating them into large applicability spheres. During the radiation exposure, the resulting hybrids gain a continuous dispersion by means of new chemical bonds. This type of compounds achieves some specific structural modifications in the polymer phase, becoming stable hybrid composites. The functional properties of hybrids definitely influence the material behavior due to the molecular changes based on the structural reasons. The radiolysis of the vulnerable component becomes an appropriate opportunity for the creation of new material with improved stability. The radiation treatment is a proper conversion procedure by which common mixtures may become continuously reorganized. This review presents several examples for the radiation modifications induced by radiation exposure that allow the compatibilization and binding of components as well as the creation of new structures with improved properties. This approach provides the reference patterns for the extension of radiation processing over the well-conducted adjustments of polymer composites, when certain material features are compulsorily required. From this review, several solutions for the adjustment of regular polymer composites into hybrid systems may become conceivable by the extended radiation processing

    Stability Efficiencies of POSS and Microalgae Extracts on the Durability of Ethylene-Propylene-Diene Monomer Based Hybrids

    No full text
    The EPDM (ethylene-propylene-diene monomer) hybrids with improved thermal and radiation strengths containing 1 and 5 phr of polyhedral oligomeric silsesquioxane (vinyl-POSS, Ov-POSS) and/or 2 phr of microalgae (Chlorella vulgaris (CV) and Spirulinaplatensis (SP)) powders were investigated in respect to their thermal stability after γ-irradiation. The material durability under accelerated degradation was qualified by chemiluminescence and gelation, which prove the contribution of inorganic filler and microalgae extracts on the increase of hybrid thermal stability, as well as the interaction between added components (POSS and CV or SP). The activation energies and the durabilities under accelerated degradation were calculated, indicating their suitable usage as appropriate materials in various applications. The reported results indicate the improvement effect of both microalgal powders on the oxidation strength, but the contribution of Spirulinaplatensis grabs attention on its efficient effects upon the prevention of degradation under accelerated aging conditions. The thermal performances of the tested EPDM based hybrids are remarkably ameliorated, if the certain formulation includes Ov-POSS (5 phr) and Spirulinaplatensis (2 phr), certifying its suitability for the pertinent applications

    Irradiation Effects in Polymer Composites for Their Conversion into Hybrids

    No full text
    In this paper several aspects of profound modifications caused by high energy exposures are presented as possible candidates for the efficient adjusting processing of polymer materials. The class of hybrid composites receives special attention due to the large spectrum of formulations, where the interphase interaction decisively influences the material properties. They represent potential start points for the intimate uniformity of hybrid morphologies. Their radiation processing turns composites onto hybrid morphology with expected features, because the transferred energy is spent for the modification of components and for their compatibility. The essential changes achieved in radiation processed composites explain the new material behavior and durability based on the peculiar restructuring of polymer molecules that occurred in the polymer phase. During high energy irradiation, the interaction between intermediates born in the constitutive phases may convert the primary composites into hybrids, integrating them into large applicability spheres. During the radiation exposure, the resulting hybrids gain a continuous dispersion by means of new chemical bonds. This type of compounds achieves some specific structural modifications in the polymer phase, becoming stable hybrid composites. The functional properties of hybrids definitely influence the material behavior due to the molecular changes based on the structural reasons. The radiolysis of the vulnerable component becomes an appropriate opportunity for the creation of new material with improved stability. The radiation treatment is a proper conversion procedure by which common mixtures may become continuously reorganized. This review presents several examples for the radiation modifications induced by radiation exposure that allow the compatibilization and binding of components as well as the creation of new structures with improved properties. This approach provides the reference patterns for the extension of radiation processing over the well-conducted adjustments of polymer composites, when certain material features are compulsorily required. From this review, several solutions for the adjustment of regular polymer composites into hybrid systems may become conceivable by the extended radiation processing

    Stabilization Effects of Natural Compounds and Polyhedral Oligomeric Silsesquioxane Nanoparticles on the Accelerated Degradation of Ethylene-Propylene-Diene Monomer

    No full text
    In this work the analysis on the stabilization activities of some natural antioxidants (rosemary extract, capsaicin, quercetin or oleanolic acid) is presented. A similar contribution of an inorganic structure—polyhedral oligomeric silsesquioxane (POSS) nanoparticles—is also evaluated. The stabilization effects on the oxidation protection were investigated for several formulations based on ethylene-propylene-diene-terpolymer (EPDM). The samples were examined in pristine state or after γ-irradiation, when the accelerated degradation scission of polymer macromolecules followed by the mitigation of oxidation. Three evaluation procedures: chemiluminescence, FTIR spectroscopy and thermal analysis were applied for the characterization of stability efficiency. The delaying effect of oxidative aging in EPDM matrix is illustrated by the values of activation energy, which are correlated with the type and concentration of embedded compounds. The durability of studied EPDM formulations is discussed for the assessment of material life. The improved behavior of structured hybrids useful for the optimization application regimes is essentially based on the antioxidant properties of polyphenolic components in the cases of natural antioxidants or on the penetration of free radical intermediates into the free volumes of POSS

    Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene

    No full text
    This study presents the improved stabilization effects of graphene on a polymer substrate, namely a styrene-isoprene-styrene triblock copolymer (SIS) which creates opportunities for long-term applications and radiation processing. The added graphene has a remarkable activity on the protection of polymer against their oxidation due to the penetration of free macroradical fragments into the free interlayer space. The chemiluminescence procedure used for the evaluation of the progress of oxidation reveals the delaying effect of oxidative degradation by the doubling extension of oxidation induction time, when the material formulation containing graphene is oxidized at 130 °C. The pristine polymer that is thermally aged requires an activation energy of 142 kJ mol−1, while the modified material needs 148, 158 and 169 kJ mol−1, for the oxidative degradation in the presence of 1, 2 and, respectively, 3 wt% of graphene. The contribution of graphene content (1 wt%) on the stability improvement of SIS is demonstrated by the increase of onset oxidation temperature from 190 °C for neat polymer to 196 °C in the presence of graphene and to 205 °C for the polymer stabilized with graphene and rosemary extract. The addition of graphene into the polymer formulations is a successful method for enlarging durability instead of the modification of receipt with synthesis antioxidants. The presumable applications of these studied materials cover the areas of medical wear, food packaging, commodities, sealing gaskets and others that may also be included through the products for nuclear power plants

    Radiation Processing of Styrene-isoprene-styrene/Poly(ε-caprolactone) Blends

    No full text
    The irradiation consequences on styrene-isoprene-styrene (SIS)/poly(ε-caprolactone) (PCL) blends are discussed starting from the oxidation initiation. Three characterization methods: chemiluminescence, differential scanning calorimetry and FTIR spectroscopy are applied. The differences that exist between the two components are revealed, when the oxidation rates of the inspected formulas depend on the blending proportion and the degradation conditions. The relevant activation energies characterizing the oxidation strength as well as the kinetic parameters of degradation during the accelerated damaging of blended polymers are related to the inhibition protection of PCL on the faster oxidation of SIS. The interaction between mixed components is revealed by the structural modifications simultaneously accompanied by the competition of formation and decay of radicals
    corecore