15 research outputs found

    Multi Domain Design: Integration and Reuse

    Get PDF
    Design of mechatronic systems is becoming increasingly complex. Companies must continuously reduce time-to-market while increasing the quality, diversity, and functionality of their products. As a result, more and more specialists from various domains are needed to develop such products. To reduce time-to-market, many companies look to reducing the time it takes to design a product. Many focus on the reuse of design objects, leading to libraries of templates and standard components to speed up their design process. However, these reusable design objects are developed and maintained in the specialists’ domains, resulting in communication and integration issues between these domains. This paper discusses these issues and proposes a combined approach for model reuse, design integration, and communication between the designers, design tools, and models involved. A case study at a multi-national company successfully demonstrated that the approach leads to a faster and more consistent design process

    Dimensionless design graphs for flexure elements and a comparison between three flexure elements

    Get PDF
    This paper presents dimensionless design graphs for three types of flexure elements, based on finite element analysis. Using these graphs as a design tool, a designer can determine the optimal geometry, based on the stiffness and rotation demands of a flexure element. An example is given using the beam flexure hinge. Between the analyzed flexure hinges, a comparison is made on basis of equal hinge functionality: rotation. The result describes the maximum stiffness properties from different hinges in identical situations. A beam flexure element is preferred over a circular flexure hinge for stiffness demands in a single direction, while a cross flexure element enables medium stiffness in two perpendicular directions
    corecore