6 research outputs found

    Quadratic Mixing of Radio Frequency Signals using Superconducting Quantum Interference Filters

    Full text link
    The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-TcT_{\mathrm{c}} grain boundary Josephson junctions and operated in active microcooler. The authors use the parabolic shape of the dip in the dc-voltage output around B=0 to mix \emph{quadratically} two external rf-signals, at frequencies f1f_{\mathrm{1}} and f2f_{\mathrm{2}} well below the Josephson frequency fJf_{\mathrm{J}}, and detect the corresponding mixing signal at ∣f1−f2∣| {f_{1}-f_{2}}| . Quadratic mixing takes also place when the SQIF is operated without magnetic shield. The experimental results are well described by a simple analytical model based on the adiabatic approximation.Comment: 3 pages, 3 figure

    High performance magnetic field sensor based on Superconducting Quantum Interference Filters

    Full text link
    We have developed an absolute magnetic field sensor using Superconducting Quantum Interference Filter (SQIF) made of high-T_c grain boundary Josephson junctions. The device shows the typical magnetic field dependent voltage response V(B), which is sharp delta-like dip in the vicinity of zero magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B_0 ~ 0 to a value B ~ B_1, which is about the average value of the earth magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ~ B_1, and the further shielding of the SQIF results in a shift of the dip towards B_0 ~ 0. The low hysteresis observed in the sequence of experiments (less than 5% of B_1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-T_c SQIFs in magnetometry.Comment: 4 pages, 2 figure

    Effects of magnetic field on two-dimensional Superconducting Quantum Interference Filters

    Full text link
    We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-like dip at B=0, which depends on the distribution of the areas of the individual loops, and on the bias current. The voltage span of the dip scales proportional to the number of rows simultaneously operating at the same working point. In addition, the voltage response of the 2D-SQIF is sensitive to a field gradient generated by a control line and superimposed to the homogeneous field coil. This feature opens the possibility to use 2D superconducting quantum interference filters as highly sensitive detectors of spatial gradients of magnetic field.Comment: 3 pages, 4 figures, submitted to AP
    corecore