7 research outputs found

    Antibiotic treatment failure of uncomplicated urinary tract infections in primary care

    No full text
    Abstract Background Higher resistance rates of > 20% have been noted in Enterobacteriaceae urinary isolates towards ciprofloxacin and co-trimoxazole (C + C) in Singapore, compared with amoxicillin-clavulanate and nitrofurantoin (AC + N). This study examined if treatment failure varied between different antibiotics, given different resistant rates, for uncomplicated urinary tract infections (UTIs) managed in primary care. We also aimed to identify gaps for improvement in diagnosis, investigations, and management. Methods A retrospective cohort study was conducted from 2019 to 2021 on female patients aged 18–50 with uncomplicated UTIs at 6 primary care clinics in Singapore. ORENUC classification was used to exclude complicated UTIs. Patients with uncomplicated UTIs empirically treated with amoxicillin-clavulanate, nitrofurantoin, ciprofloxacin or co-trimoxazole were followed-up for 28 days. Treatment failure was defined as re-attendance for symptoms and antibiotic re-prescription, or hospitalisation for UTI complications. After 2:1 propensity score matching in each group, modified Poisson regression and Cox proportional hazard regression accounting for matched data were used to determine risk and time to treatment failure. Results 3194 of 4253 (75.1%) UTIs seen were uncomplicated, of which only 26% were diagnosed clinically. Urine cultures were conducted for 1094 (34.3%) uncomplicated UTIs, of which only 410 (37.5%) had bacterial growth. The most common organism found to cause uncomplicated UTIs was Escherichia coli (64.6%), with 92.6% and 99.4% of isolates sensitive to amoxicillin-clavulanate and nitrofurantoin respectively. Treatment failure occurred in 146 patients (4.57%). Among 1894 patients treated with AC + N matched to 947 patients treated with C + C, patients treated with C + C were 50% more likely to fail treatment (RR 1.49, 95% CI 1.10–2.01), with significantly higher risk of experiencing shorter time to failure (HR 1.61, 95% CI 1.12–2.33), compared to patients treated with AC + N. Conclusion Treatment failure rate was lower for antibiotics with lower reported resistance rates (AC + N). We recommend treating uncomplicated UTIs in Singapore with amoxicillin-clavulanate or nitrofurantoin, based on current local antibiograms. Diagnosis, investigations and management of UTIs remained sub-optimal. Future studies should be based on updating antibiograms, highlighting its importance in guideline development

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC

    International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    No full text
    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described
    corecore