8 research outputs found

    Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP

    Get PDF
    Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA) study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA). Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI≥95th percentile), 2,270 Caucasian controls (BMI<95th percentile), 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF) of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r2 = 1) in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR) of 1.27 (95% CI 1.08–1.47; P = 0.0022). Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91–1.21; P = 0.49) and of 1.31 (95% CI 1.050–1.643; P = 0.017) respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact

    Chromosome 6p22 Locus Associated with Clinically Aggressive Neuroblastoma

    No full text
    BACKGROUND: Neuroblastoma is a malignancy of the developing sympathetic nervous system that most commonly affects young children and is often lethal. The etiology of this embryonal cancer is not known. METHODS: We performed a genome-wide association study by first genotyping 1,032 neuroblastoma patients and 2,043 controls of European descent using the Illumina HumanHap550 BeadChip. Three independent groups of neuroblastoma cases (N=720) and controls (N=2128) were then genotyped to replicate significant associations. RESULTS: We observed highly significant association between neuroblastoma and the common minor alleles of three single nucleotide polymorphisms (SNPs) within a 94.2 kilobase (Kb) linkage disequilibrium block at chromosome band 6p22 containing the predicted genes FLJ22536 and FLJ44180 (P-value range = 1.71×10(-9)-7.01×10(-10); allelic odds ratio range 1.39-1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of developing neuroblastoma of 1.97 (95% CI 1.58-2.44). Subsequent genotyping of these 6p22 SNPs in the three independent case series confirmed our observation of association (P=9.33×10(-15) at rs6939340 for joint analysis). Furthermore, neuroblastoma patients homozygous for the risk alleles at 6p22 were more likely to develop metastatic (Stage 4) disease (P=0.02), show amplification of the MYCN oncogene in the tumor cells (P=0.006), and to have disease relapse (P=0.01). CONCLUSION: Common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma

    High-resolution mapping and analysis of copy number variations in the human genome: A data resource for clinical and research applications

    No full text
    We present a database of copy number variations (CNVs) detected in 2026 disease-free individuals, using high-density, SNP-based oligonucleotide microarrays. This large cohort, comprised mainly of Caucasians (65.2%) and African-Americans (34.2%), was analyzed for CNVs in a single study using a uniform array platform and computational process. We have catalogued and characterized 54,462 individual CNVs, 77.8% of which were identified in multiple unrelated individuals. These nonunique CNVs mapped to 3272 distinct regions of genomic variation spanning 5.9% of the genome; 51.5% of these were previously unreported, and >85% are rare. Our annotation and analysis confirmed and extended previously reported correlations between CNVs and several genomic features such as repetitive DNA elements, segmental duplications, and genes. We demonstrate the utility of this data set in distinguishing CNVs with pathologic significance from normal variants. Together, this analysis and annotation provides a useful resource to assist with the assessment of CNVs in the contexts of human variation, disease susceptibility, and clinical molecular diagnostics
    corecore