310,346 research outputs found

    Probability distributions for directed polymers in random media with correlated noise

    Get PDF
    The probability distribution for the free energy of directed polymers in random media (DPRM) with uncorrelated noise in d=1+1d=1+1 dimensions satisfies the Tracy-Widom distribution. We inquire if and how this universal distribution is modified in the presence of spatially correlated noise. The width of the distribution scales as the DPRM length to an exponent β\beta, in good (but not full) agreement with previous renormalization group and numerical results. The scaled probability is well described by the Tracy-Widom form for uncorrelated noise, but becomes symmetric with increasing correlation exponent. We thus find a class of distributions that continuously interpolates between Tracy-Widom and Gaussian forms

    The right tail exponent of the Tracy-Widom-beta distribution

    Full text link
    The Tracy-Widom beta distribution is the large dimensional limit of the top eigenvalue of beta random matrix ensembles. We use the stochastic Airy operator representation to show that as a tends to infinity the tail of the Tracy Widom distribution satisfies P(TW_beta > a) = a^(-3/4 beta+o(1)) exp(-2/3 beta a^(3/2))

    Two Poems

    Get PDF
    Poetry by Dale Tracy

    On the average of the Airy process and its time reversal

    Full text link
    We show that the supremum of the average of the Airy process and its time reversal minus a parabola is distributed as the maximum of two independent GUE Tracy-Widom random variables. The proof is obtained by considering a directed last passage percolation model with a rotational symmetry in two different ways. We also review other known identities between the Airy process and the Tracy-Widom distributions.Comment: 12 page

    Non-intersecting Brownian walkers and Yang-Mills theory on the sphere

    Full text link
    We study a system of N non-intersecting Brownian motions on a line segment [0,L] with periodic, absorbing and reflecting boundary conditions. We show that the normalized reunion probabilities of these Brownian motions in the three models can be mapped to the partition function of two-dimensional continuum Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and SO(2N). Consequently, we show that in each of these Brownian motion models, as one varies the system size L, a third order phase transition occurs at a critical value L=L_c(N)\sim \sqrt{N} in the large N limit. Close to the critical point, the reunion probability, properly centered and scaled, is identical to the Tracy-Widom distribution describing the probability distribution of the largest eigenvalue of a random matrix. For the periodic case we obtain the Tracy-Widom distribution corresponding to the GUE random matrices, while for the absorbing and reflecting cases we get the Tracy-Widom distribution corresponding to GOE random matrices. In the absorbing case, the reunion probability is also identified as the maximal height of N non-intersecting Brownian excursions ("watermelons" with a wall) whose distribution in the asymptotic scaling limit is then described by GOE Tracy-Widom law. In addition, large deviation formulas for the maximum height are also computed.Comment: 37 pages, 4 figures, revised and published version. A typo has been corrected in Eq. (10
    • …
    corecore