22 research outputs found

    Training models of anatomic shape variability: Training models of anatomic shape variability

    Get PDF
    Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-model correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT∕ART

    Direct aperture optimization using an inverse form of back-projection

    Get PDF
    Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case

    A method and software for segmentation of anatomic object ensembles by deformable m-reps: Deformable M-Reps

    Get PDF
    Deformable shape models (DSMs) comprise a general approach that shows great promise for automatic image segmentation. Published studies by others and our own research results strongly suggest that segmentation of a normal or near-normal object from 3D medical images will be most successful when the DSM approach uses 1) knowledge of the geometry of not only the target anatomic object but also the ensemble of objects providing context for the target object and 2) knowledge of the image intensities to be expected relative to the geometry of the target and contextual objects. The segmentation will be most efficient when the deformation operates at multiple object-related scales and uses deformations that include not just local translations but the biologically important transformations of bending and twisting, i.e., local rotation, and local magnification. In computer vision an important class of DSM methods uses explicit geometric models in a Bayesian statistical framework to provide a priori information used in posterior optimization to match the DSM against a target image. In this approach a DSM of the object to be segmented is placed in the target image data and undergoes a series of rigid and non-rigid transformations that deform the model to closely match the target object. The deformation process is driven by optimizing an objective function that has terms for the geometric typicality and model-to-image match for each instance of the deformed model. The success of this approach depends strongly on the object representation, i.e., the structural details and parameter set for the DSM, which in turn determines the analytic form of the objective function. This paper describes a form of DSM called m-reps that has or allows these properties, and a method of segmentation consisting of large to small scale posterior optimization of m-reps. Segmentation by deformable m-reps, together with the appropriate data representations, visualizations, and user interface, has been implemented in software that accomplishes 3D segmentations in a few minutes. Software for building and training models has also been developed. The methods underlying this software and its abilities are the subject of this paper

    Toward a better understanding of task demands, workload, and performance during physician-computer interactions

    Get PDF
    OBJECTIVE: To assess the relationship between (1) task demands and workload, (2) task demands and performance, and (3) workload and performance, all during physician-computer interactions in a simulated environment. METHODS: Two experiments were performed in 2 different electronic medical record (EMR) environments: WebCIS (n = 12) and Epic (n = 17). Each participant was instructed to complete a set of prespecified tasks on 3 routine clinical EMR-based scenarios: urinary tract infection (UTI), pneumonia (PN), and heart failure (HF). Task demands were quantified using behavioral responses (click and time analysis). At the end of each scenario, subjective workload was measured using the NASA-Task-Load Index (NASA-TLX). Physiological workload was measured using pupillary dilation and electroencephalography (EEG) data collected throughout the scenarios. Performance was quantified based on the maximum severity of omission errors. RESULTS: Data analysis indicated that the PN and HF scenarios were significantly more demanding than the UTI scenario for participants using WebCIS (P < .01), and that the PN scenario was significantly more demanding than the UTI and HF scenarios for participants using Epic (P < .01). In both experiments, the regression analysis indicated a significant relationship only between task demands and performance (P < .01). DISCUSSION: Results suggest that task demands as experienced by participants are related to participants' performance. Future work may support the notion that task demands could be used as a quality metric that is likely representative of performance, and perhaps patient outcomes. CONCLUSION: The present study is a reasonable next step in a systematic assessment of how task demands and workload are related to performance in EMR-evolving environments

    Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study

    Get PDF
    AbstractPurposeAccurate assessment of toxicity allows for timely delivery of supportive measures during radiation therapy for head and neck cancer. The current paradigm requires weekly evaluation of patients by a provider. The purpose of this study is to evaluate the feasibility of monitoring patient reported symptoms via mobile devices.Methods and materialsWe developed a mobile application for patients to report symptoms in 5 domains using validated questions. Patients were asked to report symptoms using a mobile device once daily during treatment or more often as needed. Clinicians reviewed patient-reported symptoms during weekly symptom management visits and patients completed surveys regarding perceptions of the utility of the mobile application. The primary outcome measure was patient compliance with mobile device reporting. Compliance is defined as number of days with a symptom report divided by number of days on study.ResultsThere were 921 symptom reports collected from 22 patients during treatment. Median reporting compliance was 71% (interquartile range, 45%-80%). Median number of reports submitted per patient was 34 (interquartile range, 21-53). Median number of reports submitted by patients per week was similar throughout radiation therapy and there was significant reporting during nonclinic hours. Patients reported high satisfaction with the use of mobile devices to report symptoms.ConclusionsA substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes

    CTI: automatic construction of complex 3D surfaces from contours using the Delaunay triangulation

    No full text
    An automatic contour tiler (CTI) has been designed and implemented for use with planar, simple, possibly concave, non-intersecting &quot;wireloop&quot; contours which are typical in medical applications. Without user interaction or guidance, CTI connects 2D contours into 3D branching structures and then produces the tiles by extracting the surface of the resulting volume. CTI is a perturbing tiler based on Boissonnat&apos;s method. Previous ideas are extended by offering implementation suggestions -- above and beyond theoretical considerations -- that result in a robust program even in the face of ill-formed contours. CTI is one of a suite of tools written to an NCI standard. This results in very portable code and makes it practical and economical to produce portable tools regardless of the site&apos;s local data formats. Key Words: 3D display, Delaunay triangulation, radiotherapy treatment planning, surface reconstruction, surface visualization, triangular tiles, Voronoi diagram 1 INTRODUCTION Most grap..

    Multiscale 3-D deformable model segmentation based on medial description

    No full text
    Abstract. This paper presents a Bayesian multi-scale three dimensional deformable template approach based on a medial representation for the segmentation and shape characterization of anatomical objects in medical imagery. Prior information about the geometry and shape of the anatomical objects under study is incorporated via the construction of exemplary templates. The anatomical variability is accommodated in the Bayesian framework by defining probabilistic transformations on these templates. The modeling approach taken in this paper for building exemplary templates and associated transformations is based on a multi-scale medial representation. The transformations defined in this framework are parameterized directly in terms of natural shape operations, such as thickening and bending, and their location. Quantitative validation results are presented on the automatic segmentation procedure developed for the extraction of the kidney parenchyma-including the renal pelvis-in subjects undergoing radiation treatment for cancer. We show that the segmentation procedure developed in this paper is efficient and accurate to within the voxel resolution of the imaging modality

    Training Models of Anatomic Shape Variability

    No full text
    Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-tomodel correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT/ART

    MASK: combining 2D and 3D segmentation methods to enhance functionality

    No full text
    Image segmentation, in particular, defining normal anatomic structures and diseased or malformed tissue from tomographic images, is common in medical applications. Defining tumors or arterio-venous malformations from computed tomography (CT) or magnetic resonance (MRI) images are typical examples. This paper describes a program, Medical Anatomy Segmentation Kit (MASK), whose design acknowledges that no single segmentation technique has proven to be successful or optimal for all object definition tasks associated with medical images. A practical solution is offered through a suite of complementary user-guided segmentation techniques and extensive manual editing functions to reach the final object definition goal. Manual editing can also be used to define objects which are abstract or otherwise not well represented in the image data and so require direct human definition - e.g., a radiotherapy target volume which requires human knowledge and judgement regarding image interpretation and t..
    corecore