3 research outputs found

    Specific Sequence Features, Recognized by the SMN Complex, Identify snRNAs and Determine Their Fate as snRNPs

    No full text
    The survival of motor neurons (SMN) complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) as it binds to and delivers Sm proteins for assembly of Sm cores on the abundant small nuclear RNAs (snRNAs). Using the conserved snRNAs encoded by the lymphotropic Herpesvirus saimiri (HVS), we determined the specific sequence and structural features of RNAs for binding to the SMN complex and for Sm core assembly. We show that the minimal SMN complex-binding domain in snRNAs, except U1, is comprised of an Sm site (AUUUUUG) and an adjacent 3′ stem-loop. The adenosine and the first and third uridines of the Sm site are particularly critical for binding of the SMN complex, which directly contacts the backbone phosphates of these uridines. The specific sequence of the adjacent stem (7 to 12 base pairs)-loop (4 to 17 nucleotides) is not important for SMN complex binding, but it must be located within a short distance of the 3′ end of the RNA for an Sm core to assemble. Importantly, these defining characteristics are discerned by the SMN complex and not by the Sm proteins, which can bind to and assemble on an Sm site sequence alone. These findings demonstrate that the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells because it is able to recognize an snRNP code that they contain

    Lymphotropic Herpesvirus saimiri Uses the SMN Complex To Assemble Sm Cores on Its Small RNAs

    No full text
    The lymphotropic Herpesvirus saimiri (HVS) causes acute leukemia, T-cell lymphoma, and death in New World monkeys. HVS encodes seven small RNAs (HSURs) of unknown function. The HSURs acquire host Sm proteins and assemble Sm cores similar to those found on the spliceosomal small nuclear RNPs (snRNPs). Here we show that, like host snRNPs, HSURs use the SMN (survival of motor neurons) complex to assemble Sm cores. The HSURs bind the SMN complex directly and with very high affinity, similar to or higher than that of host snRNAs, and can outcompete host snRNAs for SMN-dependent assembly into RNPs. These observations highlight the general utility of the SMN complex for RNP assembly and suggest that infectious agents that engage the SMN complex may burden SMN-dependent pathways, possibly leading to a deleterious reduction in available SMN complex for essential host functions
    corecore