32 research outputs found

    Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis

    Get PDF
    Background: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated.Methods: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. Results: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. Discussion: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS

    CD8 T Cell Recognition of Endogenously Expressed Epstein-Barr Virus Nuclear Antigen 1

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I–restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon γ release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter–dependent pathway. Furthermore, LCL recognition by such CD8+ T cells, although slightly lower than seen with paired lines expressing a GAr-deleted EBNA1 protein, leads to strong and specific inhibition of LCL outgrowth in vitro. Endogenously expressed EBNA1 is therefore accessible to the MHC class I pathway despite GAr-mediated stabilization of the mature protein. We infer that EBNA1-specific CD8+ T cells do play a role in control of EBV infection in vivo and might be exploitable in the control of EBV+ malignancies

    Structural definition of HLA class II-presented SARS-CoV-2 epitopes reveals a mechanism to escape pre-existing CD4+ T cell immunity

    Get PDF
    CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation

    Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas

    Get PDF
    The Epstein-Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1), either targeted to the DEC205 receptor on DCs or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector, improved priming of antigen-specific CD4+ T cell help. This help supported the expansion and maintenance of EBNA1-specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T cell responses protected against EBNA1-expressing T and B cell lymphomas, including lymphoproliferations that emerged spontaneously after EBNA1 expression. In particular, the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as a prophylactic and therapeutic treatment for the respective lymphoma challenges. Our study shows that such heterologous prime-boost vaccinations against EBV-associated malignancies as well as symptomatic primary EBV infection should be further explored for clinical development

    Bioengineered small extracellular vesicles deliver multiple SARS‐CoV‐2 antigenic fragments and drive a broad immunological response

    Get PDF
    The COVID‐19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS‐CoV‐2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long‐lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi‐subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS‐CoV‐2 Spike receptor‐binding domain, or an antigenic region from SARS‐CoV‐2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen‐specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD‐specific IgGs, nucleocapsid‐specific IgGs, which neutralised SARS‐CoV‐2 infection. sEV‐based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates

    How hybrids manage growth and social–business tensions in global supply chains: the case of impact sourcing

    Get PDF
    This study contributes to the growing interest in how hybrid organizations manage paradoxical social–business tensions. Our empirical case is ‘‘impact sourcing’’— hybrids in global supply chains that hire staff from disadvantaged communities to provide services to business clients. We identify two major growth orientations— ‘‘community-focused’’ and ‘‘client-focused’’ growth—their inherent tensions and ways that hybrids manage them. The former favors slow growth and manages tensions through highly integrated client and community relations; the latter promotes faster growth and manages client and community relations separately. Both growth orientations address social–business tensions in particular ways, but also create latent constraints that manifest when entrepreneurial aspirations conflict with the current growth path. In presenting and discussing our findings, we introduce preempting management practices of tensions, and the importance of geographic embeddedness and distance to the paradox literature

    Epstein-Barr Virus Evades CD4+ T Cell Responses in Lytic Cycle through BZLF1-mediated Downregulation of CD74 and the Cooperation of vBcl-2

    Get PDF
    Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV) in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Regression of Epstein-Barr Virus-Induced B-Cell Transformation In Vitro Involves Virus-Specific CD8(+) T Cells as the Principal Effectors and a Novel CD4(+) T-Cell Reactivity

    No full text
    T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4(+) and not, as previously assumed, CD8(+) T cells. In regressing cultures, we find that the reversal of CD23(+) B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8(+), but not CD4(+), T cells; furthermore CD8(+) T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8(+) T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8(+) T cells in regression and an auxiliary role for CD4(+) T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4(+) T-cell memory. CD4(+) T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo
    corecore