127 research outputs found

    Current evidence of the role of vitamin E in prolonging a healthy life

    Get PDF
    This is a narrative review of the evidence of α-tocopherol importance in human health, especially with regards to its vitamin role. α-Tocopherol is a potent peroxyl radical scavenger, and this role is prominent in its efficacy in maintaining the metabolic health of tissues. Vitamin E deficiency is discussed as a tool to understand the impact of α-tocopherol’s absence promoting increased lipid peroxidation and polyunsaturated fatty acid depletion. Downstream deficiency consequences include impacts on choline and one-carbon metabolism, glucose and energy metabolism, and their interactions with critical thiols, such as glutathione. Importantly, human vitamin E deficiency, caused by genetic defects in the α-tocopherol transfer protein (α-TTP), provides important clues for the necessity of α-tocopherol for the peripheral nervous system. Moreover, α-TTP expression in the liver, brain, eyes, and placenta illustrates that these tissues are especially vulnerable and require this specific α-tocopherol delivery mechanism for their protection. Although clinical trial evidence is limited and equivocal about the health benefits of vitamin E supplements, there is epidemiologic evidence of the long-term benefits of increased α-tocopherol intakes in ’healthy’ diets (high in vegetables and fruits, fish, nuts, and seeds, as well as fiber). Significance statement The elaborate regulation of α-tocopherol concentrations by the human body suggests that the consistent consumption of the recommended amounts of dietary α-tocopherol (15 mg) over a lifetime are protective of the at-risk tissues, as well as providing protection from chronic diseases

    How much vitamin E? ... Just enough!

    No full text

    The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome

    No full text
    Metabolic syndrome (MetS) is a constellation of cardiometabolic risk factors, which together predict increased risk of more serious chronic diseases. We propose that one consequence of dietary overnutrition is increased abundance of Gram-negative bacteria in the gut that cause increased inflammation, impaired gut function, and endotoxemia that further dysregulate the already compromised antioxidant vitamin status in MetS. This discussion is timely because “healthy” individuals are no longer the societal norm and specialized dietary requirements are needed for the growing prevalence of MetS. Further, these lines of evidence provide the foundational basis for investigation that poor vitamin C status promotes endotoxemia, leading to metabolic dysfunction that impairs vitamin E trafficking through a mechanism involving the gut-liver axis. This report will establish a critical need for translational research aimed at validating therapeutic approaches to manage endotoxemia—an early, but inflammation-inducing phenomenon, which not only occurs in MetS, but is also prognostic of more advanced metabolic disorders including type 2 diabetes mellitus, as well as the increasing severity of nonalcoholic fatty liver diseases
    • …
    corecore