6 research outputs found
Optimierung muriner S. aureus-Infektionsmodelle durch die Verwendung von mausadaptierten S. aureus-Isolaten
Neue Antibiotika und Präventionsmaßnahmen gegen S. aureus sind aufgrund der starken Ausbreitung multiresistenter S. aureus-Stämme dringend erforderlich. Zur Entwicklung von Therapie- und Präventionsmaßnahmen werden geeignete Infektionsmodellen benötigt, die die klinische Situation möglichst exakt widerspiegeln. Da die Spezies S. aureus stark wirtsspezifisch ist, könnten wirtsadaptierte S. aureus-Stämme hierbei äußerst hilfreich sein. In der Infektionsforschung werden vor allem Mausmodelle verwendet. Da bisher jedoch angenommen wurde, dass Mäuse keine natürlichen Wirte von S. aureus sind, sind S. aureus-Forscher davon ausgegangen, dass Mäuse kein geeignetes Modell darstellen. Das wurde durch unsere und andere Arbeitsgruppen allerdings in den letzten Jahren widerlegt. Wir konnten zeigen, dass Labor- und Wildmäuse mit S. aureus besiedelt sind.
Im Rahmen dieser Arbeit sollte geklärt werden, ob murine Infektionsmodelle durch die Verwendung von mausadaptierten S. aureus-Stämmen optimiert werden können. Aus über 250 S. aureus-Stämmen, die aus Labor und Wildmäusen isoliert wurden, wurden vier mausadaptierte S. aureus-Isolate ausgewählt und mit dem humanen S. aureus-Isolat Newman in einem Pneumonie- und Bakteriämiemodell vergleichen. Diese Stämme wiesen einen repräsentativen spa-Typ sowie typischen Phagenmuster und Virulenzgene auf. Zudem waren sie in der Lage, murines Plasma zu koagulieren und in murinem Vollblut zu replizieren.
Es zeigte sich, dass das murine Isolat S. aureus DIP sowohl im Pneumonie- als auch im Bakteriämiemodell deutlich virulenter war als das humane Isolat Newman und die anderen getesteten mausadaptierten Stämme. Nach kürzester Zeit starben alle Tiere, die mit S. aureus DIP infiziert wurden. Wurde die Infektionsdosis im Vergleich zu Newman um 90 % reduziert, waren die bakterielle Last, der Belastungsscore, sowie die Zytokin- und Chemokinkonzentrationen nach Infektion mit S. aureus DIP bzw. S. aureus Newman vergleichbar. Im Besiedlungsmodell konnte gezeigt werden, dass die mausadaptierten Stämme S. aureus JSNZ sowie S. aureus DIP in der Lage sind, Mäuse über einen Zeitraum von 7 Tagen stabil zu besiedeln. Mäuse, die mit S. aureus Newman besiedelt waren, konnten den Stamm innerhalb dieses Zeitraums eliminieren. Die Genomsequenzierung der in vivo verwendeten S. aureus Stämme zeigte, dass lediglich S. aureus DIP für das Leukozidin LukMF‘ kodiert. Das lässt vermuten, dass die Präsenz des Virulenzfaktors für die gesteigerte Virulenz von S. aureus DIP verantwortlich sein könnte.
Des Weiteren sollten in dieser Arbeit ein Besiedlungsmodell mit murinen S. aureus-Isolaten etabliert und die beteiligten Immunzellen quantifiziert werden. Es zeigte sich, dass Mäuse mit murinen S. aureus-Isolaten bis zu 7 Tage besiedelt werden können wohingegen S. aureus Newman zu diesem Zeitpunkt nur noch in 20 % der Tiere nachweisbar war. Zudem konnte bei der intranasalen Besiedlung mit einer hohen Dosis S. aureus DIP [1 × 10^8 CFU] gezeigt werden, dass sowohl Th17-Zellen als auch γδ-T-Zellen nach 7 Tagen IL-17A, IL-17F und IL-22 produzieren. Jedoch konnte die Zytokinproduktion nur in Tieren nachgewiesen werden, die einen hohen Belastungsscore aufwiesen. Da nach 24 Stunden bei Tieren mit hohem Belastungsscore auch Bakterien in der Lunge detektiert wurde, ist anzunehmen, dass S. aureus diese Tiere nicht nur besiedelt, sondern bei ihnen auch eine Atemwegsinfektion verursacht hatte. Durch den geringen prozentualen Anteil an ILCs in den zervikalen Lymphknoten war es nicht möglich Rückschlüsse auf deren Zytokinproduktion zu ziehen. Somit gelang es zwar ein murines S. aureus-Besiedlungsmodell zu etablieren, jedoch kann keine Aussage zu den beteiligten Zellen des Immunsystems getroffen werden.
Zusammenfassend konnte gezeigt werden, dass Labormäuse mit mausadaptierten S. aureus-Stämmen länger besiedelt werden können als mit dem humanen Referenzstamm Newman. Zudem konnte mit Hilfe des mausadaptierten Stammes S. aureus DIP die Infektionsdosis im Pneumonie- und Bakteriämiemodell erheblich reduziert werden. Somit gelang es Mausmodelle durch die Verwendung von mausadaptierten S. aureus-Stämmen zu optimieren, auch wenn das nicht auf alle getesteten Isolate zutrifft. Durch die Anpassung an den murinen Wirt stellen mausadaptierte S. aureus-Stämme wie DIP und JSNZ ein physiologischeres Modell der Pathogen-Wirts-Interaktion dar. Die Verwendung eines solchen Stammes ermöglicht es ein besseres Verständnis für Infektionsprozesse und die Pathogen-Wirt-Interaktionen zu erlangen und dadurch eventuell neue Therapiemöglichkeiten zu entwickeln.
Es ist zu berücksichtigen, dass auch die Verwendung mausadaptierter S. aureus-Stämme in murinen Besiedlungs- und Infektionsmodellen lediglich ein Modell darstellt, welches Vor- und Nachteile hat. Daher ist es essenziell, dass Wissenschaftler die Grenzen jedes Modellsystems kennen und das richtige Infektionsmodell (oder eine Kombination davon) auswählen, um ihre Forschungsfragen zu beantworten.Staphylococcus (S.) aureus is a leading cause of bacterial infections world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because S. aureus is highly host-specific, and mice were not considered to be natural hosts of S. aureus. This has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus.
Here, we investigated whether mouse-and vole-derived S. aureus strains can be used to optimize murine S. aureus infection models. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected four out of a total of 254 murine S. aureus isolates from laboratory mice as well as wild rodents and shrews and compared them to the human-adapted S. aureus strain Newman in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in both models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses similar to that of Newman. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates, which is probably the reason for the high virulence of S. aureus DIP.
Furthermore, with an intranasal colonization model, we could show that the mouse-adapted strains S. aureus JSNZ and DIP are able to colonize mice over a period of 7 days. Mice colonized with the human isolate S. aureus Newman were able to eliminate the strain within this time. In addition, intranasal colonization with a high inoculation dose of S. aureus DIP [1 × 10^8 CFU] showed that both Th17 cells and T cells produce IL-17A, IL17F and IL-22 after 7 days. However, cytokine production could only be detected in animals with a high severity score. Hence, a respiratory infection cannot be excluded.
To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models. Furthermore, it is possible to colonize mice more stable using mouse-adapted S. aureus strains compared to the human isolate Newman. However, no conclusions can be drawn about the involved immune cells
Recommended from our members
Immune Polarization Potential of the S. aureus Virulence Factors SplB and GlpQ and Modulation by Adjuvants
Protection against Staphylococcus aureus is determined by the polarization of the anti-bacterial immune effector mechanisms. Virulence factors of S. aureus can modulate these and induce differently polarized immune responses in a single individual. We proposed that this may be due to intrinsic properties of the bacterial proteins. To test this idea, we selected two virulence factors, the serine protease-like protein B (SplB) and the glycerophosphoryl diester phosphodiesterase (GlpQ). In humans naturally exposed to S. aureus, SplB induces a type 2-biased adaptive immune response, whereas GlpQ elicits type 1/type 3 immunity. We injected the recombinant bacterial antigens into the peritoneum of S. aureus-naïve C57BL/6N mice and analyzed the immune response. This was skewed by SplB toward a Th2 profile including specific IgE, whereas GlpQ was weakly immunogenic. To elucidate the influence of adjuvants on the proteins’ polarization potential, we studied Montanide ISA 71 VG and Imject™Alum, which promote a Th1 and Th2 response, respectively. Alum strongly increased antibody production to the Th2-polarizing protein SplB, but did not affect the response to GlpQ. Montanide enhanced the antibody production to both S. aureus virulence factors. Montanide also augmented the inflammation in general, whereas Alum had little effect on the cellular immune response. The adjuvants did not override the polarization potential of the S. aureus proteins on the adaptive immune response
Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains
Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because experimental infection of mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus. Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains representing the clonal complexes (CC) 8, 49, and 88 (n = 2) were selected and compared to the human-adapted S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models.Peer Reviewe
Discovery of Staphylococcus aureus Adhesion Inhibitors by Automated Imaging and Their Characterization in a Mouse Model of Persistent Nasal Colonization.
Due to increasing mupirocin resistance, alternatives for Staphylococcus aureus nasal decolonization are urgently needed. Adhesion inhibitors are promising new preventive agents that may be less prone to induce resistance, as they do not interfere with the viability of S. aureus and therefore exert less selection pressure. We identified promising adhesion inhibitors by screening a library of 4208 compounds for their capacity to inhibit S. aureus adhesion to A-549 epithelial cells in vitro in a novel automated, imaging-based assay. The assay quantified DAPI-stained nuclei of the host cell; attached bacteria were stained with an anti-teichoic acid antibody. The most promising candidate, aurintricarboxylic acid (ATA), was evaluated in a novel persistent S. aureus nasal colonization model using a mouse-adapted S. aureus strain. Colonized mice were treated intranasally over 7 days with ATA using a wide dose range (0.5-10%). Mupirocin completely eliminated the bacteria from the nose within three days of treatment. In contrast, even high concentrations of ATA failed to eradicate the bacteria. To conclude, our imaging-based assay and the persistent colonization model provide excellent tools to identify and validate new drug candidates against S. aureus nasal colonization. However, our first tested candidate ATA failed to induce S. aureus decolonization
Wild rodents and shrews are natural hosts of Staphylococcus aureus
Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012–2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant . In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation.Peer Reviewe
Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments
Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored