2 research outputs found

    Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of liver pathologies. However, no medical treatment has been approved for the treatment of NAFLD. In our previous study, we found that PKLR could be a potential target for treatment of NALFD. Here, we investigated the effect of PKLR in in vivo model and performed drug repositioning to identify a drug candidate for treatment of NAFLD. Methods: Tissue samples from liver, muscle, white adipose and heart were obtained from control and PKLR knockout mice fed with chow and high sucrose diets. Lipidomics as well as transcriptomics analyses were conducted using these tissue samples. In addition, a computational drug repositioning analysis was performed and drug candidates were identified. The drug candidates were both tested in in vitro and in vivo models to evaluate their toxicity and efficacy. Findings: The Pklr KO reversed the increased hepatic triglyceride level in mice fed with high sucrose diet and partly recovered the transcriptomic changes in the liver as well as in other three tissues. Both liver and white adipose tissues exhibited dysregulated circadian transcriptomic profiles, and these dysregulations were reversed by hepatic knockout of Pklr. In addition, 10 small molecule drug candidates were identified as potential inhibitor of PKLR using our drug repositioning pipeline, and two of them significantly inhibited both the PKLR expression and triglyceride level in in vitro model. Finally, the two selected small molecule drugs were evaluated in in vivo rat models and we found that these drugs attenuate the hepatic steatosis without side effect on other tissues. Interpretation: In conclusion, our study provided biological insights about the critical role of PKLR in NAFLD progression and proposed a treatment strategy for NAFLD patients, which has been validated in preclinical studies. Funding: ScandiEdge Therapeutics and Knut and Alice Wallenberg Foundation

    Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial

    Get PDF
    Background: Alzheimer’s disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered\ua0combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. Methods: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35\ua0g L-serine (61.75%), 1\ua0g nicotinamide riboside (5%), 2.55\ua0g\ua0N-acetyl-L-cysteine (12.75%), and 3.73\ua0g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28\ua0days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. Results: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the\ua0CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. Conclusion: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration\ua0ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131
    corecore