124 research outputs found

    α7 Nicotinic Receptor Agonists: Potential Therapeutic Drugs for Treatment of Cognitive Impairments in Schizophrenia and Alzheimer’s Disease

    Get PDF
    Accumulating evidence suggests that α7 nicotinic receptors (α7 nAChRs), a subtype of nAChRs, play a role in the pathophysiology of neuropsychiatric diseases, including schizophrenia and Alzheimer’s disease (AD). A number of psychopharmacological and genetic studies shown that α7 nAChRs play an important role in the deficits of P50 auditory evoked potential in patients with schizophrenia, and that (α nAChR agonists would be potential therapeutic drugs for cognitive impairments associated with P50 deficits in schizophrenia. Furthermore, some studies have demonstrated that α7 nAChRs might play a key role in the amyloid-β (Aβ)-mediated pathology of AD, and that α7 nAChR agonists would be potential therapeutic drugs for Aβ deposition in the brains of patients with AD. Interestingly, the altered expression of α7 nAChRs in the postmortem brain tissues from patients with schizophrenia and AD has been reported. Based on all these findings, selective α7 nAChR agonists can be considered potential therapeutic drugs for cognitive impairments in both schizophrenia and AD. In this article, we review the recent research into the role of α7 nAChRs in the pathophysiology of these diseases and into the potential use of novel α7 nAChR agonists as therapeutic drugs

    Automated synthesis, preclinical toxicity, and radiation dosimetry of [F-18]MC225 for clinical use:a tracer for measuring P-glycoprotein function at the blood-brain barrier

    Get PDF
    Introduction: [18F]MC225 is a selective substrate for P-glycoprotein (P-gp) that has good metabolic stability and shows higher baseline uptake compared with other P-gp substrates such as (R)-[11C]Verapamil. Prior to clinical translation, it is necessary to perform process validation of the radiosynthesis, assessment of preclinical toxicity, and radiation dosimetry. Methods: The production of [18F]MC225 was automated on a CFN-MPS200 multipurpose synthesizer. The acute toxicity of MC225 was evaluated at a dose of 2.5 mg/kg bodyweight, which is more than 10,000-fold the postulated maximum clinical dose of [18F]MC225. The acute toxicity of [18F]MC225 injection at a 200-fold dose, to administer a postulated dose of 185 MBq of [18F]MC225, was also evaluated after the decay-out of 18F. The mutagenicity of MC225 was studied by a reverse mutation test using Salmonella typhimurium and Escherichia coli (Ames test). In vivo biodistribution and dosimetry studies of [18F]MC225 were carried out in normal mice. Human dosimetry was estimated using OLINDA software. Results: The mean decay-corrected yields of [18F]MC225 at end of synthesis were 13%, with > 99% radiochemical purity, > 1000 GBq/!mol molar activity, and ! 1.5 !g/185 MBq of total chemical contents. All process validation batches complied with the product specifications and the process was confirmed to be appropriate for the production of [18F]MC225. No acute toxicity of MC225 or [18F]MC225 injection was found. No mutagenic activity was observed for MC225. The biodistribution study demonstrated both hepatobiliary and renal excretion of radioactivity. The most critical organ was the pancreas, with (63.8 !Gy/MBq) or without urination (63.9 !Gy/MBq) at 360 min after injection. The estimated effective dose (!Sv/MBq) with and without urination at 360 min after injection was calculated as 15.7 and 16.9, respectively. Conclusion: [18F]MC225 shows acceptable pharmacological safety at the dose required for adequate PET imaging. The potential risk associated with [18F]MC225 PET imaging is well within acceptable dose limits

    In Vivo Evaluation of α7 Nicotinic Acetylcholine Receptor Agonists [11C]A-582941 and [11C]A-844606 in Mice and Conscious Monkeys

    Get PDF
    BACKGROUND: The alpha7 nicotinic acetylcholine receptors (nAChRs) play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. The goal of this study was to evaluate the two carbon-11-labeled alpha7 nAChR agonists [(11)C]A-582941 and [(11)C]A-844606 for their potential as novel positron emission tomography (PET) tracers. METHODOLOGY/PRINCIPAL FINDINGS: The two tracers were synthesized by methylation of the corresponding desmethyl precursors using [(11)C]methyl triflate. Effects of receptor blockade in mice were determined by coinjection of either tracer along with a carrier or an excess amount of a selective alpha7 nAChR agonist (SSR180711). Metabolic stability was investigated using radio-HPLC. Dynamic PET scans were performed in conscious monkeys with/without SSR180711-treatment. [(11)C]A-582941 and [(11)C]A-844606 showed high uptake in the mouse brain. Most radioactive compounds in the brain were detected as an unchanged form. However, regional selectivity and selective receptor blockade were not clearly observed for either compound in the mouse brain. On the other hand, the total distribution volume of [(11)C]A-582941 and [(11)C]A-844606 was high in the hippocampus and thalamus but low in the cerebellum in the conscious monkey brain, and reduced by pretreatment with SSR180711. CONCLUSIONS/SIGNIFICANCE: A nonhuman primate study suggests that [(11)C]A-582941 and [(11)C]A-844606 would be potential PET ligands for imaging alpha7 nAChRs in the human brain

    Test-retest reproducibility of cerebral adenosine A(2A) receptor quantification using [C-11]preladenant

    Get PDF
    Objective To evaluate the reproducibility of cerebral adenosine A(2A) receptor (A(2A)R) quantification using [C-11]preladenant ([C-11]PLN) and PET in a test-retest study. Methods Eight healthy male volunteers were enrolled. Dynamic 90 min PET scans were performed twice at the same time of the day to avoid the effect of diurnal variation. Subjects refrained from caffeine from 12 h prior to scanning, and serum caffeine was measured before radioligand injection. Arterial blood was sampled repeatedly during scanning and the fraction of the parent compound in plasma was determined. Total distribution volume (V-T) was estimated using 1- and 2-tissue compartment models (1-TCM and 2-TCM, respectively) and Logan graphical analysis (Logan plot) (t* = 30 min). Plasma-free fraction (f(P)) of [C-11]PLN was measured and used for correction of V-T values. Distribution volume ratio (DVR) was calculated from V-T of target and reference regions and obtained by noninvasive Logan graphical reference tissue model (LGAR) (t* = 30 min). Absolute test-retest variability (aTRV), and intra-class correlation coefficient (ICC) of V-T and DVR were calculated as indexes of repeatability. Correlation between DVR and serum concentration of caffeine (a nonselective A(2A)R blocker) was analyzed by Pearson's correlation analysis. Results Regional time-activity curves were well described by 2-TCM models. Estimation of V-T by 2-TCM produced some erroneous values; therefore, the more robust Logan plot was selected as the appropriate model. Global mean aTRV was 20% for V-T and 14% for V-T/f(P) (ICC, 0.72 for V-T and 0.87 for V-T/f(P)). Global mean aTRV of DVR was 13% for Logan plot and 10% for LGAR (ICC, 0.70 for Logan plot and 0.81 for LGAR). DVR estimates using LGAR and Logan plot were in good agreement (r(2) = 0.96). Coefficients of variation for V-T, V-T/f(P), DVR (Logan plot), and DVR (LGAR) were 47%, 47%, 27%, and 18%, respectively. Despite low serum caffeine levels, significant concentration-dependent effects on [C-11]PLN binding to target regions were observed (p < 0.01). Conclusions In this study, moderate test-retest reproducibility and large inter-subject differences were observed with [C-11]PLN PET, possibly attributable to competition by baseline amount of caffeine. Analysis of plasma caffeine concentration is recommended during [C-11]PLN PET studies

    First clinical assessment of [ 18 F]MC225, a novel fluorine-18 labelled PET tracer for measuring functional P-glycoprotein at the blood-brain barrier

    Get PDF
    Objective: 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. Methods: [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. Results: No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). Conclusions: This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB. Keywords: Blood–Brain barrier; Dosimetry; First-in-human; P-glycoprotein; Positron emission tomography

    Pharmacokinetic Modeling of (R)-[11C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates

    Get PDF
    (R)-[(11)C]verapamil is a radiotracer widely used for the evaluation of the P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Several studies have evaluated the pharmacokinetics of (R)-[(11)C]verapamil in rats and humans under different conditions. However, to the best of our knowledge, the pharmacokinetics of (R)-[(11)C]verapamil have not yet been evaluated in nonhuman primates. Our study aims to establish (R)-[(11)C]verapamil as a reference P-gp tracer for comparison of a newly developed P-gp positron emission tomography (PET) tracer in a species close to humans. Therefore, the study assesses the kinetics of (R)-[(11)C]verapamil and evaluates the effect of scan duration and P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman primates underwent two dynamic 91 min PET scans with arterial blood sampling, one at baseline and another after inhibition of the P-gp function. The (R)-[(11)C]verapamil data were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue compartment model fits using plasma-corrected for polar radio-metabolites or non-corrected for radio-metabolites as an input function and with various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (SE %) of the estimated parameters. 1-TCM was selected as the model of choice to analyze the (R)-[(11)C]verapamil data at baseline and after inhibition and for all scan durations tested. The volume of distribution (V(T)) and the efflux constant k(2) estimations were affected by the evaluated scan durations, whereas the influx constant K(1) estimations remained relatively constant. After P-gp inhibition (tariquidar, 8 mg/kg), in a 91 min scan duration, the whole-brain V(T) increased significantly up to 208% (p < 0.001) and K(1) up to 159% (p < 0.001) compared with baseline scans. The k(2) values decreased significantly after P-gp inhibition in all the scan durations except for the 91 min scans. This study suggests the use of K(1), calculated with 1-TCM and using short PET scans (10 to 30 min), as a suitable parameter to measure the P-gp function at the BBB of nonhuman primate

    Usefulness of 11C-Methionine Positron Emission Tomography for Monitoring of Treatment Response and Recurrence in a Glioblastoma Patient on Bevacizumab Therapy: A Case Report

    Get PDF
    Recently developed molecular targeted therapies such as bevacizumab (BEV; Avastin) therapy have therapeutic efficacy for glioblastoma. However, it is difficult to distinguish between a tumor response and nonenhancing tumor progression with conventional magnetic resonance imaging (MRI) after BEV administration. Here we present a recurrent glioblastoma case in which 11C-methionine positron emission tomography (MET-PET) provided useful information for detecting tumor recurrence after complete remission, as assessed by the Response Assessment in Neuro-Oncology criteria. A 47-year-old male with a left frontal lobe glioblastoma experienced recurrence 6 months postoperatively. We administered BEV concomitantly with temozolomide, subsequent to gamma knife surgery. Two months after starting BEV, complete remission was obtained. MET uptake on PET gradually decreased and had nearly disappeared 4 months after initiating BEV. No enhanced area was seen on MRI for 17 months after BEV initiation. Nevertheless, MET-PET revealed recurrence, visualized as nonenhancing tumor progression. MET-PET provides useful information for detecting glioblastoma recurrence, which lacks contrast enhancement on MRI after BEV therapy

    Evaluation of [C-11]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis

    Get PDF
    PURPOSE: Evaluation of translocator protein (TSPO) overexpression is considered an attractive research tool for monitoring neuroinflammation in several neurological and psychiatric disorders. [11C]PK11195 PET imaging has been widely used for this purpose. However, it has a low sensitivity and a poor signal-to-noise ratio. For these reasons, [11C]CB184 was evaluated as a potentially more sensitive PET tracer. METHODS: A model of herpes simplex encephalitis (HSE) was induced in male Wistar rats. On day 6 or 7 after virus inoculation, [11C]CB184 PET scans were acquired followed by ex vivo evaluation of biodistribution. In addition, [11C]CB184 and [11C]PK11195 PET scans with arterial blood sampling were acquired to generate input for pharmacokinetic modelling. Differences between the saline-treated control group and the virus-treated HSE group were explored using volumes of interest and voxel-based analysis. RESULTS: The biodistribution study showed significantly higher [11C]CB184 uptake in the amygdala, olfactory bulb, medulla, pons and striatum (p < 0.05) in HSE rats than in control rats, and the voxel-based analysis showed higher bilateral uptake in the pons and medulla (p < 0.05, corrected at the cluster level). A high correlation was found between tracer uptake in the biodistribution study and on the PET scans (p < 0.001, r2 = 0.71). Pretreatment with 5 mg/kg of unlabelled PK11195 effectively reduced (p < 0.001) [11C]CB184 uptake in the whole brain. Both, [11C]CB184 and [11C]PK11195, showed similar amounts of metabolites in plasma, and the binding potential (BPND) was not significantly different between the HSE rats and the control rats. In HSE rats BPND for [11C]CB184 was significantly higher (p < 0.05) in the amygdala, hypothalamus, medulla, pons and septum than in control rats, whereas higher uptake of [11C]PK11195 was only detected in the medulla. CONCLUSION: [11C]CB184 showed nonspecific binding to healthy tissue comparable to that observed for [11C]PK11195, but it displayed significantly higher specific binding in those brain regions affected by the HSE. Our results suggest that [11C]CB184 PET is a good alternative for imaging of neuroinflammatory processes

    Pharmacokinetic Modeling of [ 18 F]MC225 for Quantification of the P-Glycoprotein Function at the Blood-Brain Barrier in Non-Human Primates with PET

    Get PDF
    [18F]MC225 has been developed as a weak substrate of P-glycoprotein (P-gp) aimed to measure changes in the P-gp function at the blood–brain barrier with positron emission tomography. This study evaluates [18F]MC225 kinetics in non-human primates and investigates the effect of both scan duration and P-gp inhibition. Three rhesus monkeys underwent two 91-min dynamic scans with blood sampling at baseline and after P-gp inhibition (8 mg/kg tariquidar). Data were analyzed using the 1-tissue compartment model (1-TCM) and 2-tissue compartment model (2-TCM) fits using metabolite-corrected plasma as the input function and for various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (%) of the estimated parameters. For the 91-min scan duration, the influx constant K1 increased by 40.7% and the volume of distribution (VT) by 30.4% after P-gp inhibition, while the efflux constant k2 did not change significantly. Similar changes were found for all evaluated scan durations. K1 did not depend on scan duration (10 min—K1 = 0.2191 vs 91 min—K1 = 0.2258), while VT and k2 did. A scan duration of 10 min seems sufficient to properly evaluate the P-gp function using K1 obtained with 1-TCM. For the 91-min scan, VT and K1 can be estimated with a 2-TCM, and both parameters can be used to assess P-gp function

    Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [11C]CB184 and [11C]CB190, as a PET tracer for 18 kDa translocator protein: direct comparison with [11C](R)-PK11195

    Get PDF
    Objective: We report synthesis of two carbon-11 labeled imidazopyridines TSPO ligands, [11C]CB184 and [11C]CB190, for PET imaging of inflammatory process along with neurodegeneration, ischemia or brain tumor. Biodistribution of these compounds was compared with that of [11C]CB148 and [11C](R)-PK11195. Methods: Both [11C]CB184 and [11C]CB190 having 11C-methoxyl group on an aromatic ring were readily prepared using [11C]methyl triflate. Biodistribution and metabolism of the compounds were examined with normal mice. An animal PET study using 6-hydroxydopamine treated rats as a model of neurodegeneration was pursued for proper estimation of feasibility of the radioligands to determine neuroinflammation process. Results: [11C]CB184 and [11C]CB190 were obtained via O-methylation of corresponding desmethyl precursor using [11C]methyl triflate in radiochemical yield of 73&nbsp;% (decay-corrected). In vivo validation as a TSPO radioligand was carried out using normal mice and lesioned rats. In mice, [11C]CB184 showed more uptake and specific binding than [11C]CB190. Metabolism studies showed that 36&nbsp;% and 25&nbsp;% of radioactivity in plasma remained unchanged 30&nbsp;min after intravenous injection of [11C]CB184 and [11C]CB190, respectively. In the PET study using rats, lesioned side of the brain showed significantly higher uptake than contralateral side after i.v. injection of either [11C]CB184 or [11C](R)-PK11195. Indirect Logan plot analysis revealed distribution volume ratio (DVR) between the two sides which might indicate lesion-related elevation of TSPO binding. The DVR was 1.15&nbsp;±&nbsp;0.10 for [11C](R)-PK11195 and was 1.15&nbsp;±&nbsp;0.09 for [11C]CB184. Conclusion: The sensitivity to detect neuroinflammation activity was similar for [11C]CB184 and [11C](R)-PK11195
    corecore