26 research outputs found

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    Generation of Head Movements of a Robot Using Multimodal Features of Peer Participants in Group Discussion Conversation

    No full text
    In recent years, companies have been seeking communication skills from their employees. Increasingly more companies have adopted group discussions during their recruitment process to evaluate the applicants’ communication skills. However, the opportunity to improve communication skills in group discussions is limited because of the lack of partners. To solve this issue as a long-term goal, the aim of this study is to build an autonomous robot that can participate in group discussions, so that its users can repeatedly practice with it. This robot, therefore, has to perform humanlike behaviors with which the users can interact. In this study, the focus was on the generation of two of these behaviors regarding the head of the robot. One is directing its attention to either of the following targets: the other participants or the materials placed on the table. The second is to determine the timings of the robot’s nods. These generation models are considered in three situations: when the robot is speaking, when the robot is listening, and when no participant including the robot is speaking. The research question is: whether these behaviors can be generated end-to-end from and only from the features of peer participants. This work is based on a data corpus containing 2.5 h of the discussion sessions of 10 four-person groups. Multimodal features, including the attention of other participants, voice prosody, head movements, and speech turns extracted from the corpus, were used to train support vector machine models for the generation of the two behaviors. The performances of the generation models of attentional focus were in an F-measure range between 0.4 and 0.6. The nodding model had an accuracy of approximately 0.65. Both experiments were conducted in the setting of leave-one-subject-out cross validation. To measure the perceived naturalness of the generated behaviors, a subject experiment was conducted. In the experiment, the proposed models were compared. They were based on a data-driven method with two baselines: (1) a simple statistical model based on behavior frequency and (2) raw experimental data. The evaluation was based on the observation of video clips, in which one of the subjects was replaced by a robot performing head movements in the above-mentioned three conditions. The experimental results showed that there was no significant difference from original human behaviors in the data corpus and proved the effectiveness of the proposed models

    Change of access to emergency care in a repopulated village after the 2011 Fukushima nuclear disaster: a retrospective observational study

    Get PDF
    福島第一原子力発電所事故後の川内村における救急搬送の実態調査を実施 --搬送先・搬送時間の変化が浮き彫りに--. 京都大学プレスリリース. 2019-02-12.Objectives: Sustaining emergency care access is of great concern. The aim of this study is to evaluate access to emergency care in a repopulated village following the 2011 Fukushima disaster. Design: This research was a retrospective observational study. The primary outcome measure was total emergency medical services (EMS) time. A Bayesian time series analysis was performed to consider local time series trend and seasonality. Setting: The residents in Kawauchi Village, Fukushima, Japan were forced to evacuate after the 2011 Fukushima disaster. As the radiation dose was an acceptable level, the residents began the process of repopulation in April 2012. Participants: This study included patients transported by EMS from January 2009 to October 2015. Patients transported during the evacuation period (from March 2011 to March 2012) were excluded. Results: A total of 781 patients were transferred by EMS (281 patients before the disaster, 416 after repopulation and 84 during the evacuation period). A Bayesian time series analysis revealed an increase in total EMS time, from the first request call to arrival at a hospital of 21.85 min (95% credible interval 14.2–29.0, Bayesian one-sided tail-area probability p=0.001). After the disaster, 42.3% of patients were transported to a partner hospital. Conclusions: Total EMS time increased after repopulation of the area affected because of a massive number of hospital closures. Proactive partnerships would be a possible countermeasure in the affected areas after a major disaster

    Chromosomal aneuploidy improves the brewing characteristics of sake yeast

    No full text
    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile
    corecore