162 research outputs found

    Can I Play Too?

    Get PDF

    Shale weathering rates across a continental-scale climosequence

    Get PDF
    A transect of sites has been established in North America and England as part of the Critical Zone Exploration Network (CZEN) to investigate the rates of soil formation across a climate gradient. Sites reported here are all underlain by an organic-poor, iron-rich Silurian-age shale, providing a constant parent material lithology from which soil is forming. This climosequence includes relatively cold and wet sites in Wales, New York and Pennsylvania, with temperature increasing to the south in Virginia, Tennessee and Alabama. Puerto Rico provides a warm/wet end member for the transect, although this site does not lie on the same shale formation as the Appalachian Mountain sites. Geochemical, mineralogical, and cosmogenic isotope analyses are being completed similarly at all sites to allow direct comparisons and eventual modelling of the weathering processes. Preliminary results from Wales, Pennsylvania and Virginia show soils become more sodium-depleted and the depth to bedrock is significantly deeper at the wet/warm site in Virginia. The fraction of Na lost relative to parent material composition at each site varies linearly as a function of mean annual temperature. Overall, results from the transect will promote a better understanding of how climate changes and human activities impact soil formation rates

    Shale weathering rates across a continental-scale climosequence

    Get PDF
    A transect of sites has been established in North America and England as part of the Critical Zone Exploration Network (CZEN) to investigate the rates of soil formation across a climate gradient. Sites reported here are all underlain by an organic-poor, iron-rich Silurian-age shale, providing a constant parent material lithology from which soil is forming. This climosequence includes relatively cold and wet sites in Wales, New York and Pennsylvania, with temperature increasing to the south in Virginia, Tennessee and Alabama. Puerto Rico provides a warm/wet end member for the transect, although this site does not lie on the same shale formation as the Appalachian Mountain sites. Geochemical, mineralogical, and cosmogenic isotope analyses are being completed similarly at all sites to allow direct comparisons and eventual modelling of the weathering processes. Preliminary results from Wales, Pennsylvania and Virginia show soils become more sodium-depleted and the depth to bedrock is significantly deeper at the wet/warm site in Virginia. The fraction of Na lost relative to parent material composition at each site varies linearly as a function of mean annual temperature. Overall, results from the transect will promote a better understanding of how climate changes and human activities impact soil formation rates

    Magma chamber growth during inter-caldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso

    Get PDF
    Crustal magma chambers can grow to be hundreds to thousands of cubic kilometers, potentially feeding catastrophic caldera‐forming eruptions. Smaller‐volume chambers are expected to erupt frequently and freeze quickly; a major outstanding question is how magma chambers ever grow to the sizes required to sustain the largest eruptions on Earth. We use a thermo‐mechanical model to investigate the primary factors that govern the extrusive:intrusive ratio in a chamber, and how this relates to eruption frequency, eruption size, and long‐term chamber growth. The model consists of three fundamental timescales: the magma injection timescale τin, the cooling timescale τcool, and the timescale for viscous relaxation of the crust τrelax. We estimate these timescales using geologic and geophysical data from four volcanoes (Laguna del Maule, Campi Flegrei, Santorini, Aso) to compare them with the model. In each of these systems, τin is much shorter than τcool and slightly shorter than τrelax, conditions that in the model are associated with efficient chamber growth and simultaneous eruption. In addition, the model suggests that the magma chambers underlying these volcanoes are growing at rates between ~10‐4‐10‐2 km3/yr, speeding up over time as the chamber volume increases. We find scaling relationships for eruption frequency and size that suggest that as chambers grow and volatiles exsolve, eruption frequency decreases but eruption size increases. These scaling relationships provide a good match to the eruptive history from the natural systems, suggesting the relationships can be used to constrain chamber growth rates and volatile saturation state from the eruptive history alone

    Individual Differences in Processing Speed and Working Memory Speed as Assessed with the Sternberg Memory Scanning Task

    Get PDF
    The Sternberg Memory Scanning (SMS) task provides a measure of processing speed (PS) and working memory retrieval speed (WMS). In this task, participants are presented with sets of stimuli that vary in size. After a delay, one item is presented, and participants indicate whether or not the item was part of the set. Performance is assessed by speed and accuracy for both the positive (item is part of the set) and the negative trials (items is not part of the set). To examine the causes of variation in PS and WMS, 623 adult twins and their siblings completed the SMS task. A non-linear growth curve (nLGC) model best described the increase in reaction time with increasing set size. Genetic analyses showed that WMS (modeled as the Slope in the nLGC model) has a relatively small variance which is not due to genetic variation while PS (modeled as the Intercept in the nLGC model) showed large individual differences, part of which could be attributed to additive genetic factors. Heritability was 38% for positive and 32% for negative trials. Additional multivariate analyses showed that the genetic effects on PS for positive and negative trials were completely shared. We conclude that genetic influences on working memory performance are more likely to act upon basic processing speed and (pre)motoric processes than on the speed with which an item is retrieved from short term memory

    BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world

    Full text link
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world—from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association

    Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84)

    Ecological homogenization of urban USA

    Get PDF
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 74-81, doi:10.1890/120374.A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis–St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales.We thank the MacroSystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF for support. The “Ecological Homogenization of Urban America” project was supported by a series of collaborative grants from this program (EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The work arose from research funded by grants from the NSF Long Term Ecological Research Program supporting work in Baltimore (DEB-0423476), Phoenix (BCS-1026865, DEB-0423704 and DEB-9714833), Plum Island (Boston) (OCE-1058747 and 1238212), Cedar Creek (Minneapolis–St Paul) (DEB-0620652), and Florida Coastal Everglades (Miami) (DBI-0620409)
    • 

    corecore