122 research outputs found

    Structural elucidation of o-linked glycopeptides by high energy collision-induced dissociation

    Get PDF
    O-linked glycopeptides that bear a GalNAc core with and without the presence of sialic acid have been analyzed by high energy collision-induced dissociation (CID). We show that the CID spectra from the glycosylated precursor ions contain sufficient information to identify the peptide sequence and to determine the glycosylated site(s). Asialo O-linked glycopeptides, previously prepared from a tryptic digest of bovine fetuin were studied. One of the glycopeptides contained only a single Hex (hexose)-HexNAc (N-acetylhexosamine) substitution at Thr262, whereas the other exhibited Hex-HexNAc moieties at both Thr262 and Ser264. In addition, sialo and asialo fetuin glycopeptides from a pronase digest were derivatized with t-butoxycarbonyl-tyrosine, and characterized by high energy CID analysis. The presence of a Galβ(1,3)GalNAc core structure at Ser264 was confirmed by using the substrate specificity of endo-α-N-acetylgalactosaminidase. These studies revealed the presence of a β-galactosidase specific for β(1,4) linkages in the endo-α-N-acetylgalactosaminidase preparation employed. Finally, the relative stability of N-and O-glycosyl bonds to high energy CID is addressed based upon comparison of the behavior of a synthetic N-linked glycopeptide with analogous O-linked structures

    Electronic structure of periodic curved surfaces -- topological band structure

    Full text link
    Electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically formulated and numerically calculated. We focus on minimal surfaces because they are not only mathematically elegant (with the surface characterized completely in terms of "navels") but represent the topology of real systems such as zeolites and negative-curvature fullerene. The band structure turns out to be primarily determined by the topology of the surface, i.e., how the wavefunction interferes on a multiply-connected surface, so that the bands are little affected by the way in which we confine the electrons on the surface (thin-slab limit or zero thickness from the outset). Another curiosity is that different minimal surfaces connected by the Bonnet transformation (such as Schwarz's P- and D-surfaces) possess one-to-one correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to [email protected]

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice

    Get PDF
    More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease

    Experimental progress in positronium laser physics

    Get PDF
    corecore