632 research outputs found

    RNA-seq reveals post-transcriptional regulation of Drosophila insulin-like peptide dilp8 and the neuropeptide-like precursor Nplp2 by the exoribonuclease Pacman/XRN1

    Get PDF
    Ribonucleases are critically important in many cellular and developmental processes and defects in their expression are associated with human disease. Pacman/XRN1 is a highly conserved cytoplasmic exoribonuclease which degrades RNAs in a 5' - 3' direction. In Drosophila, null mutations in pacman result in small imaginal discs, a delay in onset of pupariation and lethality during the early pupal stage. In this paper, we have used RNA-seq in a genome-wide search for mRNAs misregulated in pacman null wing imaginal discs. Only 4.2% of genes are misregulated ±>2-fold in pacman null mutants compared to controls, in line with previous work showing that Pacman has specificity for particular mRNAs. Further analysis of the most upregulated mRNAs showed that Pacman post-transcriptionally regulates the expression of the secreted insulin-like peptide Dilp8. Dilp8 is related to human IGF-1, and has been shown to co-ordinate tissue growth with developmental timing in Drosophila. The increased expression of Dilp8 is consistent with the developmental delay seen in pacman null mutants. Our analysis, together with our previous results, show that the normal role of this exoribonuclease in imaginal discs is to suppress the expression of transcripts that are crucial in apoptosis and growth control during normal development

    A feasibility study of auricular therapy and self-administered acupressure for insomnia following cancer treatment

    Get PDF
    Introduction: Many cancer patients experience sleeping difficulties which can persist several years after the completion of cancer treatment. Previous research suggests that acupuncture, and variants of acupuncture (acupressure, auricular therapy) may be effective treatment options for sleep disturbance. However, current evidence is limited for cancer patients. Methods: Feasibility study with 3 arms. Seven cancer patients with insomnia randomised to receive either auricular therapy (attaching semen vaccariae seeds to ear acupoints) (n = 4), self-acupressure (n= 1) or no treatment (n= 2). Participants assigned to receive auricular therapy or self-acupressure stimulated the acupoints each night an hour before retiring to bed. The duration of participant involvement was 5 weeks. Subjective sleep quality was measured at baseline and post-treatment using the Pittsburgh sleep quality index (PSQI). The impact of treatment on concerns of importance to the participants themselves was measured using the measure yourself concerns and wellbeing (MYCaW). Each participant also completed a treatment log book. Results: All participants completed their treatment. All auricular therapy and self-acupressure participants recorded clinically significant improvements in global PSQI scores. In the auricular therapy arm mean global PSQI reduced from 12.5 at baseline to 8 following completion of treatment. In the self-acupressure arm PSQI reduced from 15 to 11. While in the no treatment arm the mean PSQI score was 14.5 at both baseline and follow up. Conclusions: Despite the limited sample size, both auricular therapy and self-acupressure may represent potentially effective treatments for cancer patients with insomnia. The positive findings suggest further research is warranted into both treatment modalities.School of Nursin

    Silver Coated Bioactive Glass Particles for Wound Healing Applications

    Get PDF
    Bioactive glass particles (0.42SiO2-0.15CaO-0.23Na 2O-0.20ZnO) of varying size (\u3c90 \u3eμm and 425-850 μm) were synthesized and coated with silver (Ag) to produce Ag coated particles (PAg). These were compared against the uncoated analogous particles (Pcon.). Surface area analysis determined that Ag coating of the glass particles resulted in increased the surface area from 2.90 to 9.12 m2/g (90 μm) and 1.09-7.71 m2/g (425-850 μm). Scanning electron microscopy determined that the Ag coating remained at the surface and there was little diffusion through the bulk. Antibacterial (Escherichia coli - 13 mm and Staphylococcus epidermidis - 12 mm) and antifungal testing (Candida albicans - 7.7 mm) determined that small Ag-coated glass particles exhibited the largest inhibition zones compared to uncoated particles. pH analysis determined an overall higher pH consider in the smaller particles, where after 24 h the large uncoated and Ag coated particles were 8.27 and 8.74 respectively, while the smaller uncoated and Ag coated particles attained pH values of 9.63 and 9.35 respectively. © Springer Science+Business Media, LLC 2012

    Aluminium-Free Glass Polyalkenoate Cements: Ion Release and in Vitro Antibacterial Efficacy

    Get PDF
    Glass polyalkenoate cements (GPCs) have exhibited potential as bone cements. This study investigates the effect of substituting TiO2 for SiO2 in the glass phase and the subsequent effect on cement rheology, mechanical properties, ion release and antibacterial properties. Glass characterization revealed a reduction in glass transition temperature (Tg) from 685 to 669 C with the addition of 6 mol % TiO2 (AT-2). Magic angle spinning nuclear magnetic resonance (MAS-NMR) revealed a shift from -81 ppm to -76pmm when comparing a Control glass to AT-2, indicating de-polymerization of the Si network. The incorporation of TiO2 also increased the working time (Tw) from 19 to 61 s and setting time (Ts) from 70 to 427 s. The maximum compressive strength (σc) increased from 64 to 85 MPa. Ion release studies determined that the addition of Ti to the glass reduced the release of zinc, calcium and strontium ions, with low concentrations of titanium being released. Antibacterial testing in E. coli resulted in greater bactericidal effects when tested in aqueous broth for both titanium containing cements. © Springer Science+Business Media New York 2013

    Transition metal materials: a first principles approach to the electronic structure of the insulating phase

    No full text
    Recent progress in the application of first principles theory to the electronic structure of transition metal materials is reviewed with particular emphasis on the use of the exact exchange interaction. The success of this approach is exemplified by calculations on a range of materials: simple monoxides, chromium cyanides and perovskite structure copper fluorides. The reliability of computed properties is established for lattice structures, spin-couplings, spin-lattice interactions, orbital ordering effects and the changes in the ground state induced by hole doping.</p

    Sol-Gel Derived Silver-Incorporated Titania Thin Films on Glass: Bactericidal and Photocatalytic Activity

    Get PDF
    Titanium dioxide (TiO2) and silver-containing TiO2 (Ag-TiO2) thin films were prepared on silica pre-coated float glass substrates by a sol-gel spin coating method. The bactericidal activity of the films was determined against Staphylococcus epidermidis under natural and ultraviolet (UV) illumination by four complementary methods; (1) the disk diffusion assay, (2) UV-induced bactericidal test, (3) qualitative Ag ion release in bacteria inoculated agar media and (4) surface topographical examination by laserscan profilometry. Photocatalytic activity of the films was measured through the degradation of stearic acid under UV, solar and visible light conditions. The chemical state and distribution of Ag nanoparticles, as well as the structure of the TiO2 matrix, and hence the bactericidal and photocatalytic activity, is controlled by post-coating calcination treatment (100-650 °C). Additionally, under any given illumination condition the Ag-incorporated films were found to have superior bactericidal and photocataltyic activity performance compared to TiO2 thin films. It is shown that with optimized thin film processing parameters, both TiO2 and Ag-TiO2 thin films calcined at 450 °C were bactericidal and photocatalytically active. © 2011 Springer Science+Business Media, LLC

    Preliminary Investigation of Novel Bone Graft Substitutes based on Strontium-Calcium-Zinc-Silicate Glasses

    Get PDF
    Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium-strontium-zinc-silicate glass-based bone grafts and characterized their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardized models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO2 (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone® (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation. © 2008 Springer Science+Business Media, LLC

    The Bioactivity and Ion Release of Titanium-Containing Glass Polyalkenoate Cements for Medical Applications

    Get PDF
    The ion release profiles and bioactivity of a series of Ti containing glass polyalkenoate cements. Characterization revealed each material to be amorphous with a Tg in the region of 650-660°C. The network connectivity decreased (1.83-1.35) with the addition of TiO2 which was also evident with analysis by X-ray photoelectron spectroscopy. Ion release from cements were determined using atomic absorption spectroscopy for zinc (Zn2+), calcium (Ca2+), strontium (Sr2+), Silica (Si4+) and titanium (Ti4+). Ions such as Zn2+ (0.1-2.0 mg/l), Ca2+ (2.0-8.3 mg/l,) Sr2+ (0.1-3.9 mg/l), and Si4+ (14-90 mg/l) were tested over 1-30 days. No Ti4+ release was detected. Simulated body fluid revealed a CaP surface layer on each cement while cell culture testing of cement liquid extracts with TW-Z (5 mol% TiO2) produced the highest cell viability (161%) after 30 days. Direct contact testing of discs resulted in a decrease in cell viability of the each cement tested. © 2010 Springer Science+Business Media, LLC
    corecore