654 research outputs found
Oxygen-stripes in La0.5Ca0.5MnO3 from ab initio calculations
We investigate the electronic, magnetic and orbital properties of
La0.5Ca0.5MnO3 perovskite by means of an ab initio electronic structure
calculation within the Hartree-Fock approximation. Using the experimental
crystal structure reported by Radaelli et al. [Phys. Rev B 55, 3015 (1997)], we
find a charge-ordering stripe-like ground state. The periodicity of the
stripes, and the insulating CE-type magnetic structure are in agreement with
neutron x-ray and electron diffraction experiments. However, the detailed
structure is more complex than that envisaged by simple models of charge and
orbital order on Mn d-levels alone, and is better described as a charge-density
wave of oxygen holes, coupled to the Mn spin/orbital order.Comment: 4 pages, 3 figures. Version accepted for publication in PR
The low prevalence effect in fingerprint comparison amongst forensic science trainees and novices
The low prevalence effect is a phenomenon whereby target prevalence affects performance in visual search (e.g., baggage screening) and comparison (e.g., fingerprint examination) tasks, such that people more often fail to detect infrequent target stimuli. For example, when exposed to higher base-rates of ‘matching’ (i.e., from the same person) than ‘non-matching’ (i.e., from different people) fingerprint pairs, people more often misjudge ‘non-matching’ pairs as ‘matches’–an error that can falsely implicate an innocent person for a crime they did not commit. In this paper, we investigated whether forensic science training may mitigate the low prevalence effect in fingerprint comparison. Forensic science trainees (n = 111) and untrained novices (n = 114) judged 100 fingerprint pairs as ‘matches’ or ‘non-matches’ where the matching pair occurrence was either high (90%) or equal (50%). Some participants were also asked to use a novel feature-comparison strategy as a potential attenuation technique for the low prevalence effect. Regardless of strategy, both trainees and novices were susceptible to the effect, such that they more often misjudged non-matching pairs as matches when non-matches were rare. These results support the robust nature of the low prevalence effect in visual comparison and have important applied implications for forensic decision-making in the criminal justice system
Match me if you can: Evidence for a domain-general visual comparison ability
Visual comparison—comparing visual stimuli (e.g., fingerprints) side by side and determining whether they originate from the same or different source (i.e., “match”)—is a complex discrimination task involving many cognitive and perceptual processes. Despite the real-world consequences of this task, which is often conducted by forensic scientists, little is understood about the psychological processes underpinning this ability. There are substantial individual differences in visual comparison accuracy amongst both professionals and novices. The source of this variation is unknown, but may reflect a domain-general and naturally varying perceptual ability. Here, we investigate this by comparing individual differences (N = 248 across two studies) in four visual comparison domains: faces, fingerprints, firearms, and artificial prints. Accuracy on all comparison tasks was significantly correlated and accounted for a substantial portion of variance (e.g., 42% in Exp. 1) in performance across all tasks. Importantly, this relationship cannot be attributed to participants’ intrinsic motivation or skill in other visual-perceptual tasks (visual search and visual statistical learning). This paper provides novel evidence of a reliable, domain-general visual comparison ability
Statistical feature training improves fingerprint-matching accuracy in novices and professional fingerprint examiners
Forensic science practitioners compare visual evidence samples (e.g. fingerprints) and decide if they originate from the same person or different people (i.e. fingerprint ‘matching’). These tasks are perceptually and cognitively complex—even practising professionals can make errors—and what limited research exists suggests that existing professional training is ineffective. This paper presents three experiments that demonstrate the benefit of perceptual training derived from mathematical theories that suggest statistically rare features have diagnostic utility in visual comparison tasks. Across three studies (N = 551), we demonstrate that a brief module training participants to focus on statistically rare fingerprint features improves fingerprint-matching performance in both novices and experienced fingerprint examiners. These results have applied importance for improving the professional performance of practising fingerprint examiners, and even other domains where this technique may also be helpful (e.g. radiology or banknote security)
Injectable Glass Polyalkenoate Cements: Evaluation of their Rheological and Mechanical Properties with and Without the Incorporation of Lidocaine Hydrochloride
Lidocaine hydrochloride is used as an anesthetic in many clinical applications. This short communication investigates the effect of complete substitution of lidocaine hydrochloride for deionized (DI) water on the physico-chemical properties of two novel glass polyalkenoate cements. Substituting DI water with lidocaine hydrochloride resulted in cements with shorter working times but comparable setting times and mechanical properties. Fourier transform infrared spectroscopy confirmed that the setting reaction in cements containing DI water and lidocaine hydrochloride was completed within 24 h, post cement preparation and maturation. Further, it was explained that lidocaine hydrochloride binds to poly(acrylic) acid (PAA) due to electrostatic forces between the positively charged amino group of lidocaine hydrochloride and the carboxylic group of the PAA, resulting in a compact poly-complex precipitate
Fabrication of CaO-NaO-SiO2/TiO2 Scaffolds for Surgical Applications
A series of titanium (Ti) based glasses were formulated (0.62 SiO2-0.14 Na2O-0.24 CaO, with 0.05 mol% TiO2 substitutions for SiO2) to develop glass/ceramic scaffolds for bone augmentation. Glasses were initially characterised using X-ray diffraction (XRD) and particle size analysis, where the starting materials were amorphous with 4.5 μm particles. Hot stage microscopy and high temperature XRD were used to determine the sintering temperature (̃700 °C) and any crystalline phases present in this region (Na2Ca3Si6O16, combeite and quartz). Hardness testing revealed that the Ti-free control (ScC- 2.4 GPa) had a significantly lower hardness than the Ti-containing materials (Sc1 and Sc2 ̃6.6 GPa). Optical microscopy determined pore sizes ranging from 544 to 955 lm. X-ray microtomography calculated porosity from 87 to 93 % and surface area measurements ranging from 2.5 to 3.3 SA/mm3. Cytotoxicity testing (using mesenchymal stem cells) revealed that all materials encouraged cell proliferation, particularly the higher Ti-containing scaffolds over 24-72 h. © Springer Science+Business Media, LLC 2012
Biocompatibility of CaO-Na2O-SiO2/TiO2 Glass Ceramic Scaffolds for Orthopaedic Applications
This work aims to determine the effect of substituting TiO2 for SiO2 in a 0.62SiO2-Na2O-0.24CaO based glass-ceramic scaffold. High temperature X-ray Diffraction (HT-XRD) was used to determine the sintering temperature (700oC). Both optical microscopy and x-ray micotomography was used to determine the average pore size (540-680ìm) of each scaffold. Cytocompatibility of each scaffold was conducted using murine mesenchymal stem cells. © 2013 IEEE
Unrestricted Hartree-Fock theory of Wigner crystals
We demonstrate that unrestricted Hartree-Fock theory applied to electrons in
a uniform potential has stable Wigner crystal solutions for in
two dimensions and in three dimensions. The correlation energies
of the Wigner crystal phases are considerably smaller than those of the fluid
phases at the same density.Comment: 4 pages, 5 figure
Unquenched large orbital magnetic moment in NiO
Magnetic properties of NiO are investigated by incorporating the spin-orbit
interaction in the LSDA+U scheme. It is found that the large part of orbital
moment remains unquenched in NiO. The orbital moment contributes about mu_L =
0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the
orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values
are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure
- …