60 research outputs found

    Development of a Novel Bioactive Glass Suitable for Osteosarcoma-Related Bone Grafts

    Get PDF
    In this study, zinc borate-based glasses with increasing gallium content (0, 2.5, 5, 10, and 15 wt % Ga) were synthesized and their effect on the viability and proliferation of preosteoblasts and osteosarcoma cancer cells were investigated. Methyl thiazolyl tetrazolium (MTT) cell viability assays using glass degradation extracts revealed that the extracts from glasses with lower Ga contents could enhance the viability of preosteoblasts, while extracts from the glass composition with 15 wt % Ga caused statistically significant reduction of their viability. MTT cell viability assays using the extracts and osteosarcoma cells showed that only extracts from the glass composition with 5 wt % Ga (G3) did not cause a statistically significant increase in the viability of cancer cells for all degradation periods (1 day, 7 days, and 28 days). G3 was selected as the most suitable composition for the osteosarcoma-related graft operations as it could improve the viability of preosteoblasts without increasing the viability of cancer cells. The viability of preosteoblasts and osteosarcoma cells in contact with the glass powders were also investigated using MTT assays. The results showed that the G3 powders could enhance the viability of preosteoblasts while decreasing the viability of osteosarcoma cells. Finally, live/dead assays revealed that suppression of proliferation appeared to be the mechanism causing the observed reductions in the viability of osteosarcoma cells exposed to G3 powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1186–1193, 2018

    A Novel Tantalum-Containing Bioglass. Part II. Development of a Bioadhesive for Sternal Fixation and Repair

    Get PDF
    With over a million median sternotomy surgeries performed worldwide every year, sternal wound complications have posed a serious risk to the affected patients. A rigid therapeutic sternal fixation device has therefore become a necessity. In this work, the incorporation of up to 0.5 mol% of tantalum pentoxide (Ta2O5), in exchange for zinc oxide (ZnO), into the SiO2-ZnO-CaO-SrO-P2O5 glass system is presented. The effect of Ta incorporation on the physical, chemical and biological properties of the glass polyalkenoate cements (GPCs) prepared from them have been presented in this manuscript. The data obtained have confirmed that Ta2O5 incorporation into the reference glass system results in increased working times, radiopacity, ion solubility, and long-term mechanical stability. The formulated glass systems have also shown clear antibacterial and antifungal activity against both Gram-negative (Escherichia coli) and Gram-positive prokaryotes (Staphylococcus aureus and Streptococcus epidermidis), as well as eukaryotes (Fusarium solani). Cytotoxicity testing showed that Ta incorporation results in no toxicity effect and may simulate osseo-integration when tested in animal models. These new metallic-containing biomaterial adhesives have been developed for sternal fixation and repair. As a permanent implant, the formulated adhesives can be used in conjunction with sternal cable ties to offer optimal fixation for patients and reduce post-operative complications such as bacterial infection and pain from micro-motion

    Xrn1/Pacman affects apoptosis and regulates expression of hid and reaper

    Get PDF
    Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms

    Self-reported Physical Activity and Objective Aerobic Fitness: Differential Associations with Gray Matter Density in Healthy Aging

    Get PDF
    Aerobic fitness (AF) and self-reported physical activity (srPA) do not represent the same construct. However, many exercise and brain aging studies interchangeably use AF and srPA measures, which may be problematic with regards to how these metrics are associated with brain outcomes, such as morphology. If AF and PA measures captured the same phenomena, regional brain volumes associated with these measures should directly overlap. This study employed the general linear model to examine the differential association between objectively-measured AF (treadmill assessment) and srPA (questionnaire) with gray matter density (GMd) in 29 cognitively unimpaired community- dwelling older adults using voxel based morphometry. The results show significant regional variance in terms of GMd when comparing AF and srPA as predictors. Higher AF was associated with greater GMd in the cerebellum only, while srPA displayed positive associations with GMd in occipito-temporal, left perisylvian, and frontal regions after correcting for age. Importantly, only AF level, and not srPA, modified the relationship between age and GMd, such that higher levels of AF were associated with increased GMd in older age, while decreased GMd was seen in those with lower AF as a function of age. These results support existing literature suggesting that both AF and PA exert beneficial effects on GMd, but only AF served as a buffer against age-related GMd loss. Furthermore, these results highlight the need for use of objective PA measurement and comparability of tools across studies, since results vary dependent upon the measures used and whether these are objective or subjective in nature

    Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants

    Get PDF
    © 2017 The Authors In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn2+), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro

    Use of whole plant Artemisia annua L. as an antimalarial therapy

    Get PDF
    Anti-malarial drugs are primary weapons for reducing Plasmodium transmission in human populations. Successful drugs have been highly efficacious and inexpensive to synthetically manufacture. Emergence of resistant parasites reduces the lifespan of each drug that is developed and deployed. Currently, the most effective anti-malarial is artemisinin (AN), which is extracted from the leaves of Artemisia annua. Because of its poor pharmacokinetic properties and prudent efforts to curtail emergence of resistance, AN is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant and the added cost of secondary anti-malarials in the ACT, make AN in the developing world a costly treatment. Here we show that dried leaves of A. annua administered orally are more effective at killing malaria parasites than a comparable dose of purified drug in a rodent malaria model (P. chabaudi). A single dose of whole plant (WP) A. annua containing 24 mg/kg AN clears 99% of parasites, where a comparable dose of pure drug has half that effect. This is consistent with findings that blood levels of AN are 40 times greater in mice receiving WP versus those given pure drug. We hypothesize that in addition to increasing bioavailability of AN, administration of WP alone may constitute a combination therapy because it contains other anti-malarial compounds that have been shown to synergize with AN. Inexpensive, efficacious, and resilient treatment for malaria based upon WP A. annua that can be grown and processed locally would be an effective addition to the global effort to reduce malaria morbidity and mortality

    Effect of TiO2 Doping on Degradation Rate, Microstructure and Strength of Borate Bioactive Glass Scaffolds

    Get PDF
    A titanium-containing borate glass series based on the system (52-X) B2O3–12CaO–6P2O5–14Na2O–16ZnO-XTiO2 with X varying from 0, 5 and 15 mol% of TiO2 incorporated, identified as BRT0, BRT1 and BRT3, respectively, were used in this study. Scaffolds (pore sizes, 165–230 μm and porosity, 53.51–69.51%) were prepared using a polymer foam replication technique. BRT3 scaffolds exhibited higher compressive strength (7.16 ± 0.22 MPa) when compared to BRT0 (6.02 ± 0.47 MPa) and BRT1 (5.65 ± 0.28 MPa) scaffolds with lower, or no, TiO2 content. The solubility of the scaffolds decreased as the TiO2 content increased up to 15 mol% when samples of each scaffold were immersed in DI water and the pH of all these extracts went up from 7.0 to 8.5 in 30 days. The cumulative ion release from the scaffolds showed significant difference with respect to TiO2 content; addition of 5 mol% TiO2 at the expense of borate (B2O3) decreased the ion release remarkably. Furthermore, it was found that for all three scaffolds, cumulative ion release increased with incubation time. The results indicate that the degradation rates and compressive strengths of borate bioactive glass scaffolds could be controlled by varying the amount of TiO2 incorporated, confirming their potential as scaffolds in TKA and rTKA

    The role of poly(methyl methacrylate) in management of bone loss and infection in revision total knee arthroplasty: A review

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The goals of this paper are: (1) to identify the most common complications, outside of sepsis, arising from the application of PMMA following rTKA, (2) to discuss the current applications and drawbacks of employing PMMA in managing bone loss, (3) to review the role of PMMA in addressing bone infection following complications in rTKA. Papers published between 1970 to 2018 have been considered through searching in Springer, Google Scholar, IEEE Xplore, Engineering village, PubMed and weblinks. This review considers the use of PMMA as both a bone void filler and as a spacer material in two-stage revision. To manage bone loss, PMMA is widely used to fill peripheral bone defects whose depth is less than 5 mm and covers less than 50% of the bone surface. Treatment of bone infections with PMMA is mainly for two-stage rTKA where antibiotic-loaded PMMA is inserted as a spacer. This review also shows that using antibiotic-loaded PMMA might cause complications such as toxicity to surrounding tissue, incomplete antibiotic agent release from the PMMA, roughness and bacterial colonization on the surface of PMMA. Although PMMA is the only commercial bone cement used in rTKA, there are concerns associated with using PMMA following rTKA. More research and clinical studies are needed to address these complications

    Developing a Whole Plant Artemisia annua Antimalarial Therapeutic: pACT

    Get PDF
    The GRAS plant Artemisia annua L. produces the sesquiterpene lactone, artemisinin. The current therapy for malaria is artemisinin + an older drug: artemisinin combination therapy (ACT). In Plasmodium chabaudi-infected mice, dried leaves of A. annua are more potent than equal amounts of pure artemisinin and may also prevent artemisinin drug resistance from emerging. This whole plant therapy is pACT: plant-based artemisinin combination therapy. Pharmacokinetics in healthy and infected mice given either pure artemisinin or pACT is different and showed that \u3e 40 fold more artemisinin enters the blood when plant material is present; plant matrix enhanced bioavailability into serum. Dried leaves as capsules or tablets given to African malaria patients were also efficacious. Flavonoids, phenolic acids, monoterpenes and other artemisinic metabolites found in the plant have mild antimalarial activity. Some may synergize with artemisinin to enhance its efficacy. In simulated digestion studies the effects of cellulose and gelatin capsules, sucrose, 4 oils, and 3 staple grains (rice, corn, and millet) were studied to determine their effect on AN and flavonoid release into the liquid phase of the intestinal stage of digestion. Compared to pACT alone: sucrose and oil enhanced release of flavonoids by 100%, but artemisinin was unaffected; both capsule types, and corn and millet meal significantly reduced artemisinin release, but had no effect on flavonoids. From field trials in MA, it was estimated that \u3e 500,000 patients could be treated from plants grown on 1 ac of land. Analysis of 10 crops of the high artemisinin-producing WPI clone of A. annua grown under different field and lab conditions showed there was consistent production of artemisinin at about 1.4% DW. Together these results show how a simple herbal remedy could be used as an efficacious, inexpensive, controlled and sustainable orally delivered therapeutic for treating malaria and other artemisinin-susceptible diseases
    corecore