2 research outputs found

    Diversidad e incidencia de hongos asociados a enfermedades foliares de la avena (Avena sativa L.) en los valles altos de México

    Get PDF
    El objetivo de este estudio fue determinar las especies de hongos asociados a enfermedades foliares de la avena en los Valles Altos de México. Durante los ciclos agrícolas primavera–verano 2009 y 2010, se recolectaron en 163 sitios diferentes un total de 815 muestras de plantas de avena exhibiendo síntomas de enfermedades foliares y signos en el caso de royas. La identificación de los hongos se basó en caracteres morfológicos. Se identificaron seis especies de hongos fitopatógenos: Colletotrichum graminicola, Curvularia hawaiiensis, Drechslera avenacea, Passalora graminis, Puccinia coronata y Puccinia graminis f. sp. avenae. Además, se encontraron cinco especies de hongos saprófitos o patógenos débiles: Alternaria triticicola, A. triticina, A. uredinis, Curvularia protuberata y Pleospora sp. Los hongos fitopatógenos que presentaron mayor frecuencia fueron: P. graminis f. sp. avenae (73%), P. coronata (61%) y D. avenacea (19%).The aim of this study was to determine the fungal species associated to foliar diseases on oat in the highlands of Mexico. During spring-fall seasons 2009 and 2010, a total of 815 samples of oat plants exhibiting foliar diseases were collected from 163 different oat fields. Fungal identification was based on morphological characteristics. Six different pathogenic fungal species were identified: Colletotrichum graminicola, Curvularia hawaiiensis, Drechslera avenacea, Passalora graminis, Puccina coronata, Puccinia graminis f. sp. avenae. Whereas, that the saprophytic and weakly pathogenic fungi founded were: Alternaria triticicola, A. triticina, A. uredinis, Curvularia protuberata y Pleospora sp. The species P. graminis f. sp. avenae (73%), P. coronata (61%) and D. avenacea (19%) were the pathogenic fungi most frequently founded.Gerencia de Comunicación e Imagen InstitucionalFil: García-León, E. Colegio de Postgraduados. Instituto de Fitosanidad. Fitopatología; MéxicoFil: Leyva-Mir, S.G. Universidad Autónoma Chapingo. Departamento de Parasitología Agrícola; México.Fil: Villaseñor-Mir, H.E. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental del Valle de México; México.Fil: Rodríguez-García, M.F. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental del Valle de México; México.Fil: Tovar-Pedraza, J.M. Colegio de Postgraduados. Instituto de Fitosanidad. Fitopatología; Méxic

    Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico

    Full text link
    This is the peer reviewed version of the following article: Rêgo, T.J.S., Elena, G., Correia, K.C., Tovar‐Pedraza, J.M., Câmara, M.P.S., Armengol, J., Michereff, S.J. and Berbegal, M. (2019), Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathol, 68: 930-938. doi:10.1111/ppa.12997 , which has been published in final form athttps://doi.org/10.1111/ppa.12997. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Lasiodiplodia theobromae is one of the most frequent fungal pathogens associated with dieback, gummosis, leaf spot, stem-end rot and fruit rot symptoms in cashew, mango, papaya and grapevine. In this study, the variation in the genetic diversity of 117 L. theobromae isolates from northeastern Brazil (n = 100) and Mexico (n = 17), which were collected from these four crops, was analysed using microsatellite markers. The results revealed low genetic diversity among L. theobromae populations and the existence of two genetic groups. All Mexican isolates were grouped with Brazilian isolates, suggesting a low level of differentiation between these populations. Furthermore, no evident host or climate-based population differentiation was observed for L. theobromae in Brazil. The populations studied were mostly clonal, but additional studies are needed to better understand the mode of reproduction of the pathogen. The low genetic diversity of L. theobromae populations in northeastern Brazil suggests that resistant cultivars could be used as a durable management strategy to reduce the impact of the diseases caused by this pathogen.This study was financially supported by CoordenacAo de Aperfeicoamento de Pessoal de Nivel Superior - CAPES, 'Ciencia sem Fronteiras - CAPES' (number 88881.132070/2016-01) and the Universitat Politecnica de Valencia. G.E. was supported by the Spanish postdoctoral grant Juan de la Cierva-Formacion. The authors thank Maela Leon and Valentin Garrigues (Universitat Politecnica de Valencia, Valencia, Spain) for laboratory support. The authors declare no conflicts of interest.Rêgo, T.; Elena-Jiménez, G.; Correia, KC.; Tovar-Pedraza J.M.; Câmara, MPS.; Armengol Fortí, J.; Michereff, SJ.... (2019). Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathology. 68(5):930-938. https://doi.org/10.1111/ppa.12997S930938685Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1-2), 101-102. doi:10.1046/j.1471-8278.2000.00014.xAlvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi:10.1127/0941-2948/2013/0507Archer, F. I., Adams, P. E., & Schneiders, B. B. (2016). stratag: Anrpackage for manipulating, summarizing and analysing population genetic data. Molecular Ecology Resources, 17(1), 5-11. doi:10.1111/1755-0998.12559ARNAUD-HAOND, S., DUARTE, C. M., ALBERTO, F., & SERRÃO, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115-5139. doi:10.1111/j.1365-294x.2007.03535.xBegoude Boyogueno, A. D., Slippers, B., Perez, G., Wingfield, M. J., & Roux, J. (2012). High gene flow and outcrossing within populations of two cryptic fungal pathogens on a native and non-native host in Cameroon. Fungal Biology, 116(3), 343-353. doi:10.1016/j.funbio.2011.12.001Berbegal, M., Pérez-Sierra, A., Armengol, J., & Grünwald, N. J. (2013). Evidence for Multiple Introductions and Clonality in Spanish Populations of Fusarium circinatum. Phytopathology®, 103(8), 851-861. doi:10.1094/phyto-11-12-0281-rBRUVO, R., MICHIELS, N. K., D’SOUZA, T. G., & SCHULENBURG, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101-2106. doi:10.1111/j.1365-294x.2004.02209.xBurgess, T., Wingfield, M. J., & Wingfield, B. D. (2003). Development and characterization of microsatellite loci for the tropical tree pathogen Botryosphaeria rhodina. Molecular Ecology Notes, 3(1), 91-94. doi:10.1046/j.1471-8286.2003.00361.xBurgess, T. I., Barber, P. A., Mohali, S., Pegg, G., de Beer, W., & Wingfield, M. J. (2006). Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 98(3), 423-435. doi:10.3852/mycologia.98.3.423Burgess, T. I., Crous, C. J., Slippers, B., Hantula, J., & Wingfield, M. J. (2016). Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants, 8, plw076. doi:10.1093/aobpla/plw076Correia, K. C., Silva, M. A., de Morais, M. A., Armengol, J., Phillips, A. J. L., Câmara, M. P. S., & Michereff, S. J. (2015). Phylogeny, distribution and pathogenicity ofLasiodiplodiaspecies associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 65(1), 92-103. doi:10.1111/ppa.12388Coutinho, I. B. L., Freire, F. C. O., Lima, C. S., Lima, J. S., Gonçalves, F. J. T., Machado, A. R., … Cardoso, J. E. (2016). Diversity of genusLasiodiplodiaassociated with perennial tropical fruit plants in northeastern Brazil. Plant Pathology, 66(1), 90-104. doi:10.1111/ppa.12565Cruywagen, E. M., Slippers, B., Roux, J., & Wingfield, M. J. (2017). Phylogenetic species recognition and hybridisation in Lasiodiplodia : A case study on species from baobabs. Fungal Biology, 121(4), 420-436. doi:10.1016/j.funbio.2016.07.014Dray, S., & Dufour, A.-B. (2007). Theade4Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4). doi:10.18637/jss.v022.i04PINAUD, D., & WEIMERSKIRCH, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. Journal of Animal Ecology, 76(1), 9-19. doi:10.1111/j.1365-2656.2006.01186.xFAO 2018.FAOSTAT. [http://www.fao.org/faostat/en/#data/QC]. Accessed 8 August 2018.Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of Genotypic Diversity Data for Populations of Microorganisms. Phytopathology®, 93(6), 738-746. doi:10.1094/phyto.2003.93.6.738Grünwald, N. J., Everhart, S. E., Knaus, B. J., & Kamvar, Z. N. (2017). Best Practices for Population Genetic Analyses. Phytopathology®, 107(9), 1000-1010. doi:10.1094/phyto-12-16-0425-rvwHedrick, P. W. (2005). A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution, 59(8), 1633-1638. doi:10.1111/j.0014-3820.2005.tb01814.xIBGE 2018.PAM 2016: valor da produção agrícola nacional foi 20% maior do que em 2015. Instituto Brasileiro de Geografia e Estatística. [https://agenciadenoticias.ibge.gov.br/agencia-noticias/2013-agencia-de-noticias/releases/16814‐pam‐2016‐valor‐da‐producao‐agricola‐nacional‐foi‐20‐maior‐do‐que‐em‐2015.ht ml]. Accessed 8 August 2018.Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics, 6. doi:10.3389/fgene.2015.00208Marques, M. W., Lima, N. B., de Morais, M. A., Barbosa, M. A. G., Souza, B. O., Michereff, S. J., … Câmara, M. P. S. (2013). Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 61(1), 181-193. doi:10.1007/s13225-013-0231-zBEVAN, J. R., CLARKE, D. D., & CRUTE, I. R. (1993). Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathology, 42(4), 636-646. doi:10.1111/j.1365-3059.1993.tb01544.xMehl, J., Wingfield, M., Roux, J., & Slippers, B. (2017). Invasive Everywhere? Phylogeographic Analysis of the Globally Distributed Tree Pathogen Lasiodiplodia theobromae. Forests, 8(5), 145. doi:10.3390/f8050145BARRETT, L. G., & BRUBAKER, C. L. (2006). Isolation and characterization of microsatellite loci from the rust pathogen, Melampsora lini. Molecular Ecology Notes, 6(3), 930-932. doi:10.1111/j.1471-8286.2006.01404.xMohali, S., Burgess, T. I., & Wingfield, M. J. (2005). Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathology, 35(6), 385-396. doi:10.1111/j.1439-0329.2005.00418.xNetto, M. S. B., Assunção, I. P., Lima, G. S. A., Marques, M. W., Lima, W. G., Monteiro, J. H. A., … Câmara, M. P. S. (2014). Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Diversity, 67(1), 127-141. doi:10.1007/s13225-014-0279-4Netto, M. S. B., Lima, W. G., Correia, K. C., da Silva, C. F. B., Thon, M., Martins, R. B., … Câmara, M. P. S. (2017). Analysis of phylogeny, distribution, and pathogenicity of Botryosphaeriaceae species associated with gummosis of Anacardium in Brazil, with a new species of Lasiodiplodia. Fungal Biology, 121(4), 437-451. doi:10.1016/j.funbio.2016.07.006Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76, 51-167. doi:10.3114/sim0021Santos, P. H. D., Carvalho, B. M., Aguiar, K. P., Aredes, F. A. S., Poltronieri, T. P. S., Vivas, J. M. S., … Silveira, S. F. (2017). Phylogeography and population structure analysis reveals diversity by mutations in Lasiodiplodia theobromae with distinct sources of selection. Genetics and Molecular Research, 16(2). doi:10.4238/gmr16029681Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi:10.1038/72708Shah, M.-U.-D., Verma, K. S., Singh, K., & Kaur, R. (2011). Genetic diversity and gene flow estimates among three populations ofBotryodiplodia theobromaecausing die-back and bark canker of pear in Punjab. Archives Of Phytopathology And Plant Protection, 44(10), 951-960. doi:10.1080/03235400903458829Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. doi:10.1016/j.fbr.2007.06.002VARSHNEY, R., GRANER, A., & SORRELLS, M. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. doi:10.1016/j.tplants.2005.10.004Winter, D. J. (2012). mmod: an R library for the calculation of population differentiation statistics. Molecular Ecology Resources, 12(6), 1158-1160. doi:10.1111/j.1755-0998.2012.03174.
    corecore