16 research outputs found

    Simple One-Pot Preparation of Water-Soluble, Cysteine-Reactive Cyanine and Merocyanine Dyes for Biological Imaging

    Get PDF
    A simple one-pot-procedure for preparation of protein-reactive, water soluble merocyanine and cyanine dyes has been developed. The 1-(3-ammoniopropyl)-2,3,3-trimethyl-3H-indolium-5-sulfonate bromide (1) was used as a common starting intermediate. The method allows easy preparation of dyes with chloro and iodoacetamide side chains for covalent attachment to cysteine. By placing a sulfonato group directly on the dye fluorophore system, dyes with high fluorescence quantum yields in water were generated. Both iodo- and chloroacetamido- derivatives were shown to be useful in protein labeling. Less reactive chloroacetamides will be preferential for selective labeling of the most reactive cysteines

    Simultaneous Fluorescent Monitoring of Proteasomal Subunit Catalysis

    Get PDF
    The proteasome, a multicatalytic protease, displays distinct chymotrypsin-like, caspase-like, and trypsin-like activities at three different subunits of the multimeric complex. Fluorescent substrates for each of these active sites have been described. However, since the fluorescent properties of these substrates are very similar, it is not possible to simultaneously monitor catalysis of two or more activities. We have developed a long wavelength (λex = 600 nm, λem = 700 nm) fluorescent substrate for the chymotrypsin-like active site via a combinatorial library strategy. This peptide-based substrate is a highly selective proteasomal chymotrypsin-like sensor, as assessed by a series of proteasomal active site mutants in yeast cell lysates. A corresponding caged analog of the sensor has been prepared, which is resistant to proteolysis until activated by 349 nm light. The latter affords the opportunity to assess proteasomal activity with a high degree of temporal control. The distinct photophysical properties of the sensor allow the chymotrypsin-like activity to be simultaneously monitored during caspase-like or trypsin-like catalysis. We have found that chymotrypsin-like activity is enhanced in the presence of the trypsin-like substrate, but reduced in the presence of caspase-like substrate. Furthermore, the chymotrypsin-like sensor hinders the activity of both the caspase- and trypsin-like active sites. Coincident monitoring of two catalytic active sites furnishes two-thirds coverage of total proteasomal activity, which should provide the means to address if and how the distinct active sites of the proteasome influence one another during catalysis

    Multicolor Monitoring of Dysregulated Protein Kinases in Chronic Myelogenous Leukemia

    Get PDF
    The Bcr-Abl and Lyn protein tyrosine kinases have been separately linked to the emergence of imatinib resistance in patients with chronic myelogenous leukemia. We have developed fluorescent sensors for these kinases that are enzymatically and photophysically distinct, allowing us to simultaneously, yet separately, visualize the tyrosine kinase activities of both Abl and Lyn. Multicolor monitoring revealed that an imatinib resistant cell line (MYL-R) displays a remarkable 13-fold enhancement in Lyn kinase activity relative to its imatinib sensitive counterpart (MYL). By contrast, both cell lines display nearly identical Abl activities. The upregulation of Lyn kinase phosphotransferase activity in MYL-R cells is linked to an overexpression of the Lyn B isoform. Furthermore, MYL-R cells possess a 4-fold higher level of activated Lyn and 5-fold lower level of autoinhibited Lyn than MYL cells. Furthermore, studies with an activating SH2 ligand revealed that Lyn from imatinib-resistant MYL-R cells is primed and active, whereas Lyn from imatinib-sensitive cells is dependent upon phosphorylated SH2 ligands for activity

    Experimental and DFT Studies:  Novel Structural Modifications Greatly Enhance the Solvent Sensitivity of Live Cell Imaging Dyes

    Get PDF
    Structural modifications of previously reported merocyanine dyes (J. Am. Chem. Soc. 2003, 125, 4132–4145) were found to greatly enhance the solvent dependence of their absorbance and fluorescence emission maxima. Density functional theory (DFT) calculations have been performed to understand the differences in optical properties between the new and previously synthesized dyes. Absorption and emission energies were calculated for several new dyes using DFT vertical self-consistent reaction field methods (VSCRF). Geometries of ground and excited states were optimized with a Conductor-like screening model (COSMO) and self-consistent-field (SCF) methods. The new dyes have enhanced zwitterionic character in the ground state, and much lower polarity in the excited state, as shown by the DFT-VSCRF calculations. Consistently, the position of the absorption bands are strongly blue-shifted in more polar solvent (methanol compared to benzene) as predicted by the DFT spectral calculations. Inclusion of explicit H-bonding solvent molecules within the quantum model further enhances the predicted shifts, and is consistent with the observed spectral broadening. Smaller, but significant spectral shifts in polar versus nonpolar solvent are predicted and observed for emission bands. The new dyes show large fluorescence quantum yields in polar hydrogen bonding solvents; qualitatively, the longest bonds along the conjugated chain at the excited S1 state minimum are shorter in the more polar solvent, inhibiting photoisomerization. The loss of photostability of the dyes is a consequence of the reaction with and electron transfer to singlet oxygen, starting oxidative dye cleavage. The calculated vertical ionization potentials of three dyes I-SO, AI-SO(4), and AI-BA(4) in benzene and methanol are consistent with their relative photobleaching rates; the charge distributions along the conjugated chains for the three dyes are similarly predictive of higher reaction rates for AI-SO(4) and AI-BA(4) than for I-SO. Time dependent DFT (TDDFT) calculations were also performed on AI-BA(4); these were less accurate than the VSCRF method in predicting the absorption energy shift from benzene (C6H6) to methanol (MeOH)

    A Biosensor of S100A4 Metastasis Factor Activation:  Inhibitor Screening and Cellular Activation Dynamics †

    Get PDF
    S100A4, a member of the S100 family of Ca2+-binding proteins, displays elevated expression in malignant human tumors compared with benign tumors, and increased expression correlates strongly with poor patient survival. S100A4 has a direct role in metastatic progression, likely due to the modulation of actomyosin cytoskeletal dynamics, which results in increased cellular motility. We developed a fluorescent biosensor (Mero-S100A4) that reports on the Ca2+-bound, activated form of S100A4. Direct attachment of a novel solvatochromatic reporter dye to S100A4 results in a sensor that, upon activation, undergoes a 3-fold enhancement in fluorescence, thus providing a sensitive assay for use in vitro and in vivo. In cells, localized activation of S100A4 at the cell periphery is observed during random migration and following stimulation with lysophosphatidic acid, a known activator of cell motility and proliferation. Additionally, a screen against a library of FDA-approved drugs with the biosensor identified an array of phenothiazines as inhibitors of myosin-II associated S100A4 function. These data demonstrate the utility of the new biosensor both for drug discovery and for probing the cellular dynamics controlled by the S100A4 metastasis factor
    corecore