555 research outputs found

    Comparison of standardised versus non-standardised methods for testing the in vitro potency of oxytetracycline against mannheimia haemolytica and pasteurella multocida

    Get PDF
    The in vitro pharmacodynamics of oxytetracycline was established for six isolates of each of the calf pneumonia pathogens Mannheimia haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and bacterial time-kill curves were determined in two matrices, Mueller Hinton broth (MHB) and calf serum. Geometric mean MIC ratios, serum:MHB, were 25.2:1 (M. haemolytica) and 27.4:1 (P. multocida). The degree of binding of oxytetracycline to serum protein was 52.4%. Differences between serum and broth MICs could not be accounted for by oxytetracycline binding to serum protein. In vitro time-kill data suggested a co-dependent killing action of oxytetracycline. The in vitro data indicate inhibition of the killing action of oxytetracycline by serum factor(s). The nature of the inhibition requires further study. The outcome of treatment with oxytetracycline of respiratory tract infections in calves caused by M. haemolytica and P. multocida may not be related solely to a direct killing action

    A history of antimicrobial drugs in animals: Evolution and revolution

    Get PDF
    The evolutionary process of antimicrobial drug (AMD) uses in animals over a mere eight decades (1940–2020) has led to a revolutionary outcome, and both evolution and revolution are ongoing, with reports on a range of uses, misuses and abuses escalating logarithmically. As well as veterinary therapeutic perspectives (efficacy, safety, host toxicity, residues, selection of drug, determination of dose and measurement of outcome in treating animal diseases), there are also broader, nontherapeutic uses, some of which have been abandoned, whilst others hopefully will soon be discontinued, at least in more developed countries. Although AMD uses for treatment of animal diseases will continue, it must: (a) be sustainable within the One Health paradigm; and (b) devolve into more prudent, rationally based therapeutic uses. As this review on AMDs is published in a Journal of Pharmacology and Therapeutics, its scope has been made broader than most recent reviews in this field. Many reviews have focused on negative aspects of AMD actions and uses, especially on the question of antimicrobial resistance. This review recognizes these concerns but also emphasizes the many positive aspects deriving from the use of AMDs, including the major research‐based advances underlying both the prudent and rational use of AMDs. It is structured in seven sections: (1) Introduction; (2) Sulfonamide history; (3) Nontherapeutic and empirical uses of AMDs (roles of agronomists and veterinarians); (4) Rational uses of AMDs (roles of pharmacologists, clinicians, industry and regulatory controls); (5) Prudent use (residue monitoring, antimicrobial resistance); (6) International and inter‐disciplinary actions; and (7) Conclusions

    Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and Tau Bootis

    Full text link
    Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in Tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23-day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray (1997) are also not seen, but in this case with marginal (2 sigma) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation, because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes' data and for our own. Tau Boo's large radial velocity amplitude and v*sin(i) make it easier to test for pulsations in this star. Again we find no evidence for periodic line-shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.Comment: 44 pages, 19 figures, plain TeX, accepted to ApJS (companion to letter astro-ph/9712279

    Cyclooxygenase-2 preserves flow-mediated remodelling in old obese Zucker rat mesenteric arteries

    Get PDF
    AIMS: Resistance arteries have a key role in the control of local blood flow and pressure, and chronic increases in blood flow induce endothelium-dependent outward hypertrophic remodelling. The incidence of metabolic syndrome increases with age, and the combination of these two risk factors impairs endothelium integrity, in part through an inflammatory process. We hypothesized that cyclooxygenase-2 (COX2) would affect remodelling in 12-month-old obese rats compared with young rats. METHODS AND RESULTS: Mesenteric arteries of obese and lean Zucker rats were alternatively ligated to generate high flow (HF) in the median artery. After 21 days, arteries were isolated for in vitro analysis. After 21 days, outward hypertrophic remodelling occurred in HF arteries in obese (498 +/- 20 vs. 443 +/- 18 mum intraluminal diameter in normal flow (NF) arteries, P < 0.01), but not in lean rats (454 +/- 17 vs. 432 +/- 14, NS; n = 12 per group). Endothelium-dependent (acetylcholine)-mediated relaxation (AMR) was lower in obese than in lean rats. AMR was reduced by NO-synthase blockade in all groups, and eNOS expression was higher in HF than in NF arteries without difference between lean and obese rats. Indomethacin further reduced AMR in HF arteries from obese rats only. Obesity increased COX2 immunostaining in mesenteric arteries. Acute COX2 inhibition (NS398) significantly reduced AMR in HF arteries from obese rats only, suggesting production of vasodilator prostanoid(s). In obese rats chronically treated with the COX2 inhibitor celecoxib, outward remodelling did not occur in HF arteries and AMR was improved without reaching the level found in lean rats. CONCLUSION: COX2 preserved in part flow-mediated arterial remodelling in old obese rats. Nevertheless, this effect was not sufficient to keep endothelium-dependent relaxation to the level obtained in lean rats

    Determinants of flow-mediated outward remodeling in female rodents: respective roles of age, estrogens, and timing

    Get PDF
    OBJECTIVE: Flow (shear stress)-mediated outward remodeling (FMR) of resistance arteries is a key adaptive process allowing collateral growth after arterial occlusion but declining with age. 17-beta-estradiol (E2) has a key role in this process through activation of estrogen receptor alpha (ERalpha). Thus, we investigated the impact of age and timing for estrogen efficacy on FMR. APPROACH AND RESULTS: Female rats, 3 to 18 months old, were submitted to surgery to increase blood flow locally in 1 mesenteric artery in vivo. High-flow and normal-flow arteries were collected 2 weeks later for in vitro analysis. Diameter increased by 27% in high-flow arteries compared with normal-flow arteries in 3-month-old rats. The amplitude of remodeling declined with age (12% in 18-month-old rats) in parallel with E2 blood level and E2 substitution failed restoring remodeling in 18-month-old rats. Ovariectomy of 3-, 9-, and 12-month-old rats abolished FMR, which was restored by immediate E2 replacement. Nevertheless, this effect of E2 was absent 9 months after ovariectomy. In this latter group, ERalpha and endothelial nitric oxide synthase expression were reduced by half compared with age-matched rats recently ovariectomized. FMR did not occur in ERalpha(-/-) mice, whereas it was decreased by 50% in ERalpha(+/-) mice, emphasizing the importance of gene dosage in high-flow remodeling. CONCLUSIONS: E2 deprivation, rather than age, leads to decline in FMR, which can be prevented by early exogenous E2. However, delayed E2 replacement was ineffective on FMR, underlining the importance of timing of this estrogen action

    Heme oxygenase 1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation, oxidative stress, and nitric oxide

    Get PDF
    Heme oxygenase 1 is induced by hemodynamic forces in vascular smooth muscle and endothelial cells. We investigated the involvement of heme oxygenase 1 in flow (shear stress)-dependent remodeling. Two or 14 days after ligation of mesenteric resistance arteries, vessels were isolated. In rats, at 14 days, diameter increased by 23% in high-flow arteries and decreased by 22% in low-flow arteries compared with normal flow vessels. Heme oxygenase activity inhibition using Tin-protoporphyrin abolished diameter enlargement in high-flow arteries and accentuated arterial narrowing in low-flow arteries (32% diameter decrease versus 22% in control). Two days after ligation, heme oxygenase 1 expression increased in high-flow and low-flow vessels, in association with a reduced mitochondrial aconitase activity (marker of oxidative stress) in high-flow arteries only. Inhibition of macrophage infiltration (clodronate) decreased heme oxygenase 1 induction in low-flow but not in high-flow arteries. Similarly, inhibition of NADPH oxidase activity (apocynin) decreased heme oxygenase 1 induction in low-flow but not high-flow arteries. However, dihydroethidium staining was higher in high-flow and low-flow compared with normal flow arteries. In arteries cannulated in an arteriograph, heme oxygenase 1 mRNA increased in a flow-dependent manner and was abolished by N(G)-nitro-l-arginine methyl ester, catalase, or mitochondrial electron transport chain inhibition. Furthermore, heme oxygenase 1 induction using cobalt-protoporphyrin restored altered high-flow remodeling in endothelial NO synthase knockout mice. Thus, in high-flow remodeling, heme oxygenase 1 induction depends on shear stress-generated NO and mitochondria-derived hydrogen peroxide. In low-flow remodeling, heme oxygenase 1 induction requires macrophage infiltration and is mediated by NADPH oxidase-derived superoxide

    Comparison of in vitro static and dynamic assays to evaluate the efficacy of an antimicrobial drug combination against Staphylococcus aureus

    Get PDF
    An easily implementable strategy to reduce treatment failures in severe bacterial infections is to combine already available antibiotics. However, most in vitro combination assays are performed by exposing standard bacterial inocula to constant concentrations of antibiotics over less than 24h, which can be poorly representative of clinical situations. The aim of this study was to assess the ability of static and dynamic in vitro Time-Kill Studies (TKS) to identify the potential benefits of an antibiotic combination (here, amikacin and vancomycin) on two different inoculum sizes of two S. aureus strains. In the static TKS (sTKS), performed by exposing both strains over 24h to constant antibiotic concentrations, the activity of the two drugs combined was not significantly different the better drug used alone. However, the dynamic TKS (dTKS) performed over 5 days by exposing one strain to fluctuating concentrations representative of those observed in patients showed that, with the large inoculum, the activities of the drugs, used alone or in combination, significantly differed over time. Vancomycin did not kill bacteria, amikacin led to bacterial regrowth whereas the combination progressively decreased the bacterial load. Thus, dTKS revealed an enhanced effect of the combination on a large inoculum not observed in sTKS. The discrepancy between the sTKS and dTKS results highlights that the assessment of the efficacy of a combination for severe infections associated with a high bacterial load could be demanding. These situations probably require the implementation of dynamic assays over the entire expected treatment duration rather than the sole static assays performed with steady drug concentrations over 24h

    Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida

    Get PDF
    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC) and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1) bacteriostatic and bactericidal levels of kill; (2) for 50 and 90% target attainment rates (TAR); and (3) for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida) and 44.7 and 86.6 mg/kg (A. pleuropneumoniae). For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida) and 18.2 and 35.2 mg/kg (A. pleuropneumoniae) were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points
    • 

    corecore