15 research outputs found

    Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake

    No full text
    Strain ALEN 2(T) was isolated from a mixed culture capable of complete autotrophic denitrification with thiosulfate as electron donor at pH 10; the mixed culture was enriched from sediment from Lake Fazda (Wadi Natrun, Egypt), a hypersaline alkaline lake. The isolate had large, non-motile, coccoid or barrel-shaped cells with intracellular sulfur globules. The bacterium was obligately chemolithoautotrophic. It grew with reduced sulfur compounds aerobically and anaerobically with nitrate as electron acceptor, nitrate being reduced to nitrite. It was moderately halophilic and obligately alkaliphilic. On the basis of genetic analysis and its unique phenotype, strain ALEN 2 T ( = DSM 14787(T) = UNIQEM 213(T)) is proposed as the type strain of a novel species of the genus Thialkalivibrio, Thialkalivibrio nitratireducens

    Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: Two novel representatives of reductive sulfur cycle from soda lakes

    No full text
    Anaerobic enrichments with H2 as electron donor and thiosulfate/polysulfide as electron acceptor at pH 10 and 0.6 M total Na+ yielded two non sulfate-reducing representatives of reductive sulfur cycle from soda lake sediments. Strain AHT 1 was isolated with thiosulfate as the electron acceptor from north–eastern Mongolian soda lakes and strain AHT 2—with polysulfide as the electron acceptor from Wadi al Natrun lakes in Egypt. Both isolates represented new phylogenetic lineages: AHT 1—within Clostridiales and AHT 2—within the Deltaproteobacteria. Both bacteria are obligate anaerobes with respiratory metabolism. Both grew chemolithoautotrophically with H2 as the electron donor and can use thiosulfate, elemental sulfur and polysulfide as the electron acceptors. AHT 2 also used nitrate as acceptor, reducing it to ammonia. During thiosulfate reduction, AHT 1 excreted sulfite. dsrAB gene was not found in either strain. Both strains were moderate salt-tolerant (grow up to 2 M total Na+) true alkaliphiles (grow between pH 8.5 and 10.3). On the basis of the phenotypic and phylogenetic data, strains AHT 1 and AHT 2 are proposed as new genera and species Dethiobacter alkaliphilus and Desulfurivibrio alkaliphilus, respectively.Department of BiotechnologyApplied Science

    Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes

    No full text
    In this paper we describe denitrification at extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with sediment slurries demonstrated the presence of acetate-utilizing denitrifying populations active at in situ conditions. Anaerobic enrichment cultures at pH 10 and 4 M total Na+ with acetate as electron donor and nitrate, nitrite and N2O as electron acceptors resulted in the dominance of Gammaproteobacteria belonging to the genus Halomonas. Both mixed and pure culture studies identified nitrite and N2O reduction as rate-limiting steps in the denitrification process at extremely haloalkaline conditions.BiotechnologyApplied Science

    Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats

    No full text
    Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Steppe (Altai, Russia) using nitrogen-free alkaline medium of pH 10. The isolates were represented by thin motile rods forming terminal round endospores. They are strictly fermentative saccharolytic anaerobes but tolerate high oxygen concentrations, probably due to a high catalase activity. All of the strains are obligately alkaliphilic and highly salt-tolerant natronophiles (chloride-independent sodaphiles). Growth was possible within a pH range from 7.5 to 10.6, with an optimum at 9.5–10, and within a salt range from 0.2 to 4 M Na+, with an optimum at 0.5–1.5 M for the different strains. The nitrogenase activity in the whole cells also had an alkaline pH optimum but was much more sensitive to high salt concentrations compared to the growing cells. The isolates formed a compact genetic group with a high level of DNA similarity. Phylogenetic analysis based on 16S-rRNA gene sequences placed the isolates into Bacillus rRNA group 1 as a separate lineage with Amphibacillus tropicus as the nearest relative. In all isolates the key functional nitrogenase gene nifH was detected. A new genus and species, Natronobacillus azotifigens gen. nov., sp. nov., is proposed to accommodate the novel diazotrophic haloalkaliphiles.BiotechnologyApplied Science
    corecore