118 research outputs found

    Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Get PDF
    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps

    Evidence for a Control of Plasma Serotonin Levels by 5-Hydroxytryptamine 2B

    Full text link

    A Variable Star Census in a Perseus Field

    Full text link
    The Berlin Exoplanet Search Telescope is a small-aperture, wide-field telescope dedicated to time-series photometric observations. During an initial commissioning phase at the Thueringer Landessternwarte Tautenburg, Germany, and subsequent operations at the Observatoire de Haute-Provence, France, a 3.1 {\deg} x 3.1 {\deg} circumpolar field close to the galactic plane centered at ({\alpha}, {\delta}) = (02h 39m 23s, +52{\deg} 01' 46") (J 2000.0) was observed between 2001 August and 2006 December during 52 nights. From the 32129 stars observed, a subsample of 145 stars with clear stellar variability was detected out of which 125 are newly identified variable objects. For five bright objects, the system parameters were derived by modeling the light curve.Comment: 8 pages, 5 figures, 3 table

    Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Get PDF
    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps

    Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration

    Full text link
    [EN] We report the development of a table-top high peak power Titanium:Sapphire (Ti:Sa) CPA laser working at 100 Hz capable of delivering 205 mJ, 55 fs pulses. Every amplification stage is pumped by Nd-doped solid-state lasers and fully powered by diodes. Thermal effects in the Ti:Sa amplifiers are compensated passively with optics. This system is intended to be used for proton acceleration experiments at high repetition rates.Centro para el Desarrollo Tecnológico Industrial (CDTI, Spain) within the INNPRONTA program, Grant no. IPT-20111027.Lera, R.; Bellido-Millán, PJ.; Sánchez, I.; Mur, P.; Seimetz, M.; Benlloch Baviera, JM.; Roso, L.... (2019). Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration. Applied Physics B. 125(1):1-8. https://doi.org/10.1007/s00340-018-7113-8S181251P. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, P. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lachèze-Murel, T. Lefrou, S. le Pape, P. Mercère, H. Merdji, A.S. Morlens, J.P. Rousseau, C. Valentin, Nature 431(7007), 426–429 (2004)V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, A.E. Dangor, Science 298(5598), 1596–1600 (2002)H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Progress Phys. 75(5), 056401 (2012)A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751–793 (2013)T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267–270 (1979)M. Noaman-ul Haq, H. Ahmed, T. Sokollik, L. Yu, Z. Liu, X. Yuan, F. Yuan, M. Mirzaie, X. Ge, L. Chen, J. Zhang, Phys. Rev. Accel. Beams 20, 041301 (2017)D. Strickland, G. Mourou, Opt. Commun. 53(3), 219–221 (1985)G. Cheriaux, B. Walker, L.F. Dimauro, P. Rousseau, F. Salin, J.P. Chambaret, Opt. Lett. 21(6), 414–416 (1996)P. Tournois, Opt. Commun. 140(4), 245–249 (1997)R. Soulard, A. Brignon, S. Raby, E. Durand, R. Moncorgé, Appl. Phys. B 106(2), 295–300 (2012)J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, J. Li, Chin. Opt. Lett. 14(5), 051404 (2016)A. Maleki, M.K. Tehrani, H. Saghafifar, M.H.M. Dindarlu, H. Ebadian, Laser Phys. 26(2), 025003 (2016)R. Lera, F. Valle-Brozas, S. Torres-Peiró, A.R. de-la Cruz, M. Galán, P. Bellido, M. Seimetz, J.M. Benlloch, L. Roso, Appl. Opt. 55(33), 9573–9576 (2016)R. Lausten, P. Balling, J. Opt. Soc. Am. B 20(7), 1479–1485 (2003)I. Nam, M. Kim, T.H. Lee, S.W. Lee, H. Suk, Curr. Appl. Phys. 15(4), 468–472 (2015)E. Treacy, IEEE J. Quantum Electron. 5(9), 454–458 (1969)A. Trisorio, S. Grabielle, M. Divall, N. Forget, C.P. Hauri, Opt. Lett. 37(14), 2892–2894 (2012)Y.-H. Cha, Y.-W. Lee, S.M. Nam, J.M. Han, Y.J. Rhee, B.D. Yoo, B.C. Lee, Y.U. Jeong, Appl. Opt. 46(28), 6854–6858 (2007)P. Bellido, R. Lera, M. Seimetz, A.R. de la Cruz, S. Torres-Peiró, M. Galán, P. Mur, I. Sánchez, R. Zaffino, L. Vidal, A. Soriano, S. Sánchez, F. Sánchez, M. Rodríguez-Álvarez, J. Rigla, L. Moliner, A. Iborra, L. Hernández, D. Grau-Ruiz, A. González, J. García-Garrigos, E. Díaz-Caballero, P. Conde, A. Aguilar, L. Roso, J. Benlloch, J. Instrum. 12(05), T05001 (2017

    Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Get PDF
    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009–September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all sky conditions, the median relative biases are much larger, with large dispersion for both instruments at all sites (VDA: about 12 %; OHP: 9 %; SDR: 11 %). Correlation between satellite-based and ground-based data is still better at VDA and OHP (about 0.95) than at SDR (about 0.73) for both satellite instruments. These results are explained considering the time of overpass of the two satellites, which is far from solar noon, preventing a good estimation of the cloud cover necessary for a good modelling of the UVI. Site topography and environment are shown to have a non-significant influence. At VDA and OHP, OMI v1.3 shows a significant improvement with respect to v1.2, which did not account for absorbing aerosols

    Cell Transplant

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) are a most appealing source for cell replacement therapy in acute brain lesions. We evaluated the potential of hiPSC therapy in stroke by transplanting hiPSC-derived neural progenitor cells (NPCs) into the postischemic striatum. Grafts received host tyrosine hydroxylase-positive afferents and contained developing interneurons and homotopic GABAergic medium spiny neurons that, with time, sent axons to the host substantia nigra. Grafting reversed stroke-induced somatosensory and motor deficits. Grafting also protected the host substantia nigra from the atrophy that follows disruption of reciprocal striatonigral connections. Graft innervation by tyrosine hydoxylase fibers, substantia nigra protection, and somatosensory functional recovery were early events, temporally dissociated from the slow maturation of GABAergic neurons in the grafts and innervation of substantia nigra. This suggests that grafted hiPSC-NPCs initially exert trophic effects on host brain structures, which precede integration and potential pathway reconstruction. We believe that transplantation of NPCs derived from hiPSCs can provide useful interventions to limit the functional consequences of stroke through both neuroprotective effects and reconstruction of impaired pathways
    corecore