3 research outputs found

    A Comprehensive Examination Of White Matter Tracts And Connectometry In Major Depressive Disorder

    Get PDF
    Background Major depressive disorder (MDD) is a debilitating disorder characterized by widespread brain abnormalities. The literature is mixed as to whether or not white matter abnormalities are associated with MDD. This study sought to examine fractional anisotropy (FA) in white matter tracts in individuals with MDD using diffusion tensor imaging (DTI). Methods 139 participants with MDD and 39 healthy controls (HC) in a multisite study were included. DTI scans were acquired in 64 directions and FA was determined in the brain using four methods: region of interest (ROI), tract-based spatial statistics (TBSS), and diffusion tractography. Diffusion connectometry was used to identify white matter pathways associated with MDD. Results There were no significant differences when comparing FA in MDD and HC groups using any method. In the MDD group, there was a significant relationship between depression severity and FA in the right medial orbitofrontal cortex, and between age of onset of MDD and FA in the right caudal anterior cingulate cortex using the ROI method. There was a significant relationship between age of onset and connectivity in the thalamocortical radiation, inferior longitudinal fasciculus, and cerebellar tracts using diffusion connectometry. Conclusions The lack of group differences in FA and connectometry analysis may result from the clinically heterogenous nature of MDD. However, the relationship between FA and depression severity may suggest a state biomarker of depression that should be investigated as a potential indicator of response. Age of onset may also be a significant clinical feature to pursue when studying white matter tracts

    Kynurenine pathway metabolites selectively associate with impaired associative memory function in depression

    No full text
    Activation of the kynurenine pathway (KP), an important downstream effect of inflammation, is a driver of depression and neurodegeneration. Damage from the end product of KP activation, quinolinic acid, may be responsible specifically for impairment in hippocampally mediated memory function, among its effects. We hypothesized that associative memory – the ability to recall relationships between items – would be sensitive to KP activation because it is heavily dependent on the hippocampus. We tested a sample of N ​= ​80 adults with unmedicated depression using a face-name task which assesses the ability to recognize, as well as to recall correct pairings, of faces and names. Plasma samples were analyzed for KP metabolites – tryptophan (TRP), kynurenine (KYN), quinolinic acid (QUIN) and kynurenic acid (KYNA). Using linear models we examined whether the KYN/TRP and QUIN/KYNA ratios predicted performance of recognition memory and associative memory, accounting for item type and the number of learning exposures to items (1 vs. 3). We found that for rearranged items viewed three times, associative memory performance was inversely related to the QUIN/KYNA ratio (p ​= ​0.01, p ​= ​0.001 adjusted for age, gender and race/ethnicity). Recognition memory was not associated with KP activation. The results support our hypothesis that KP activation most sensitively impacts hippocampally mediated memory function
    corecore