33 research outputs found

    The design of a purpose-built exergame for fall prediction and prevention for older people

    Get PDF
    Background Falls in older people represent a major age-related health challenge facing our society. Novel methods for delivery of falls prevention programs are required to increase effectiveness and adherence to these programs while containing costs. The primary aim of the Information and Communications Technology-based System to Predict and Prevent Falls (iStoppFalls) project was to develop innovative home-based technologies for continuous monitoring and exercise-based prevention of falls in community-dwelling older people. The aim of this paper is to describe the components of the iStoppFalls system. Methods The system comprised of 1) a TV, 2) a PC, 3) the Microsoft Kinect, 4) a wearable sensor and 5) an assessment and training software as the main components. Results The iStoppFalls system implements existing technologies to deliver a tailored home-based exercise and education program aimed at reducing fall risk in older people. A risk assessment tool was designed to identify fall risk factors. The content and progression rules of the iStoppFalls exergames were developed from evidence-based fall prevention interventions targeting muscle strength and balance in older people. Conclusions The iStoppFalls fall prevention program, used in conjunction with the multifactorial fall risk assessment tool, aims to provide a comprehensive and individualised, yet novel fall risk assessment and prevention program that is feasible for widespread use to prevent falls and fall-related injuries. This work provides a new approach to engage older people in home-based exercise programs to complement or provide a potentially motivational alternative to traditional exercise to reduce the risk of falling

    Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in frail elderly are a common problem with a rising incidence. Gait and postural instability are major risk factors for falling, particularly in geriatric patients. As walking requires attention, cognitive impairments are likely to contribute to an increased fall risk. An objective quantification of gait and balance ability is required to identify persons with a high tendency to fall. Recent studies have shown that stride variability is increased in elderly and under dual task condition and might be more sensitive to detect fall risk than walking speed. In the present study we complemented stride related measures with measures that quantify trunk movement patterns as indicators of dynamic balance ability during walking. The aim of the study was to quantify the effect of impaired cognition and dual tasking on gait variability and stability in geriatric patients.</p> <p>Methods</p> <p>Thirteen elderly with dementia (mean age: 82.6 ± 4.3 years) and thirteen without dementia (79.4 ± 5.55) recruited from a geriatric day clinic, walked at self-selected speed with and without performing a verbal dual task. The Mini Mental State Examination and the Seven Minute Screen were administered. Trunk accelerations were measured with an accelerometer. In addition to walking speed, mean, and variability of stride times, gait stability was quantified using stochastic dynamical measures, namely regularity (sample entropy, long range correlations) and local stability exponents of trunk accelerations.</p> <p>Results</p> <p>Dual tasking significantly (p < 0.05) decreased walking speed, while stride time variability increased, and stability and regularity of lateral trunk accelerations decreased. Cognitively impaired elderly showed significantly (p < 0.05) more changes in gait variability than cognitive intact elderly. Differences in dynamic parameters between groups were more discerned under dual task conditions.</p> <p>Conclusions</p> <p>The observed trunk adaptations were a consistent instability factor. These results support the concept that changes in cognitive functions contribute to changes in the variability and stability of the gait pattern. Walking under dual task conditions and quantifying gait using dynamical parameters can improve detecting walking disorders and might help to identify those elderly who are able to adapt walking ability and those who are not and thus are at greater risk for falling.</p

    Dual-task costs while walking increase in old age for some, but not for other tasks: an experimental study of healthy young and elderly persons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested in the past that the ability to walk while concurrently engaging in a second task deteriorates in old age, and that this deficit is related to the high incidence of falls in the elderly. However, previous studies provided inconsistent findings about the existence of such an age-related dual-task deficit (ARD). In an effort to explain this inconsistency, we explored whether ARD while walking emerges for some, but not for other types of task.</p> <p>Methods</p> <p>Healthy young and elderly subjects were tested under five different combinations of a walking and a non-walking task. The results were analysed jointly with those of a previous study from our lab, such that a total of 13 task combinations were evaluated. For each task combination and subject, we calculated the mean dual-task costs across both constituent tasks, and quantified ARD as the difference between those costs in elderly and in young subjects.</p> <p>Results</p> <p>An analysis of covariance yielded no significant effects of obstacle presence and overall task difficulty on ARD, but a highly significant effect of visual demand: non-walking tasks which required ongoing visual observation led to ARD of more than 8%, while those without such requirements led to near-zero ARD. We therefore concluded that the visual demand of the non-walking task is critical for the emergence of ARD while walking.</p> <p>Conclusion</p> <p>Combinations of walking and concurrent visual observation, which are common in everyday life, may contribute towards disturbed gait and falls during daily activities in old age. Prevention and rehabilitation programs for seniors should therefore include training of such combinations.</p

    Identification of healthy elderly fallers and non-fallers by gait analysis under dual-task conditions

    No full text
    International audienc

    Effects of physical training on the physical capacity of frail, demented patients with a history of falling: a randomised controlled trial

    No full text
    International audienc

    Effets d'un entraînement physique sur l'équilibre chez les seniors institutionnalisés

    No full text
    International audienc
    corecore