45 research outputs found

    Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

    Get PDF
    Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica

    Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation

    Get PDF
    Purpose: Congenital diaphragmatic hernia (CDH) may result in severe respiratory insufficiency with a high morbidity. The role of a disturbed surfactant metabolism in the pathogenesis of CDH is unclear. We therefore studied endogenous surfactant metabolism in the most severe CDH patients who required extracorporeal membrane oxygenation (ECMO). Methods: Eleven neonates with CDH who required ECMO and ten ventilated neonates without significant lung disease received a 24-h infusion of the stable isotope [U-13C] glucose. The13C-incorporation into palmitic acid in surfactant phosphatidylcholine (PC) isolated from serial tracheal aspirates was measured. Mean PC concentration in epithelial lining fluid (ELF) was measured during the first 4 days of the study. Results: Fractional surfactant PC synthesis was decreased in CDH-ECMO patients compared to controls (2.4 ± 0.33 vs. 8.0 ± 2.4%/day, p = 0.04). The control group had a higher maximal enrichment (0.18 ± 0.03 vs. 0.09 ± 0.02 APE, p = 0.04) and reached this maximal enrichment earlier (46.7 ± 3.0 vs. 69.4 ± 6.6 h, p = 0.004) compared to the CDH-ECMO group, which reflects higher and faster precursor incorporation in the control group. Surfactant PC concentration in ELF was similar in both groups. Conclusion: These results show that CDH patients who require ECMO have a decreased surfactant PC synthesis, which may be part of the pathogenesis of severe pulmonary insufficiency and has a negative impact on weaning from ECMO

    Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation

    Get PDF
    Purpose: Congenital diaphragmatic hernia (CDH) may result in severe respiratory insufficiency with a high morbidity. The role of a disturbed surfactant metabolism in the pathogenesis of CDH is unclear. We therefore studied endogenous surfactant metabolism in the most severe CDH patients who required extracorporeal membrane oxygenation (ECMO). Methods: Eleven neonates with CDH who required ECMO and ten ventilated neonates without significant lung disease received a 24-h infusion of the stable isotope [U-13C] glucose. The13C-incorporation into palmitic acid in surfactant phosphatidylcholine (PC) isolated from serial tracheal aspirates was measured. Mean PC concentration in epithelial lining fluid (ELF) was measured during the first 4 days of the study. Results: Fractional surfactant PC synthesis was decreased in CDH-ECMO patients compared to controls (2.4 ± 0.33 vs. 8.0 ± 2.4%/day, p = 0.04). The control group had a higher maximal enrichment (0.18 ± 0.03 vs. 0.09 ± 0.02 APE, p = 0.04) and reached this maximal enrichment earlier (46.7 ± 3.0 vs. 69.4 ± 6.6 h, p = 0.004) compared to the CDH-ECMO group, which reflects higher and faster precursor incorporation in the control group. Surfactant PC concentration in ELF was similar in both groups. Conclusion: These results show that CDH patients who require ECMO have a decreased surfactant PC synthesis, which may be part of the pathogenesis of severe pulmonary insufficiency and has a negative impact on weaning from ECMO

    Determination and Characterization of Tetraspanin-Associated Phosphoinositide-4 Kinases in Primary and Neoplastic Liver Cells

    No full text
    Accumulating evidence implicates phosphoinositide 4-phosphate as a regulatory molecule in its own right recruiting specific effector proteins to cellular membranes. Here, we describe biochemical and immunocytochemical methods to evaluate tetraspanin-associated phosphoinositide-4 kinases activity in primary human hepatic stellate cells (hHSC) and neoplastic hepatoblastoma cells
    corecore