829 research outputs found
Magnetization plateaus of an easy-axis Kagom\'e antiferromagnet with extended interactions
We investigate the properties in finite magnetic field of an extended
anisotropic XXZ spin-1/2 model on the Kagome lattice, originally introduced by
Balents, Fisher, and Girvin [Phys. Rev. B, 65, 224412 (2002)]. The
magnetization curve displays plateaus at magnetization m=1/6 and 1/3 when the
anisotropy is large. Using low-energy effective constrained models (quantum
loop and quantum dimer models), we discuss the nature of the plateau phases,
found to be crystals that break discrete rotation and/or translation
symmetries. Large-scale quantum Monte-Carlo simulations were carried out in
particular for the m=1/6 plateau. We first map out the phase diagram of the
effective quantum loop model with an additional loop-loop interaction to find
stripe order around the point relevant for the original model as well as a
topological Z2 spin liquid. The existence of a stripe crystalline phase is
further evidenced by measuring both standard structure factor and entanglement
entropy of the original microscopic model.Comment: 14 pages, 14 figure
Symmetry-protected topological phases of alkaline-earth cold fermionic atoms in one dimension
We investigate the existence of symmetry-protected topological phases in
one-dimensional alkaline-earth cold fermionic atoms with general half-integer
nuclear spin I at half filling. In this respect, some orbital degrees of
freedom are required. They can be introduced by considering either the
metastable excited state of alkaline-earth atoms or the p-band of the optical
lattice. Using complementary techniques, we show that SU(2) Haldane topological
phases are stabilised from these orbital degrees of freedom. On top of these
phases, we find the emergence of topological phases with enlarged SU(2I+1)
symmetry which depend only on the nuclear spin degrees of freedom. The main
physical properties of the latter phases are further studied using a
matrix-product state approach. On the one hand, we find that these phases are
symmetry-protected topological phases, with respect to inversion symmetry, when
I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold
fermions. On the other hand, for the other values of I(=half-odd integer),
these topological phases are stabilised only in the presence of exact
SU(2I+1)-symmetry
Low-lying excitations and magnetization process of coupled tetrahedral systems
We investigate low-lying singlet and triplet excitations and the
magnetization process of quasi-1D spin systems composed of tetrahedral spin
clusters. For a class of such models, we found various exact low-lying
excitations; some of them are responsible for the first-order transition
between two different ground states formed by local singlets. Moreover, we find
that there are two different kinds of magnetization plateaus which are
separated by a first-order transition.Comment: To appear in Phys.Rev.B (Issue 01 August 2002). A short comment is
adde
Semiclassical Approach to Competing Orders in Two-leg Spin Ladder with Ring-Exchange
We investigate the competition between different orders in the two-leg spin
ladder with a ring-exchange interaction by means of a bosonic approach. The
latter is defined in terms of spin-1 hardcore bosons which treat the N\'eel and
vector chirality order parameters on an equal footing. A semiclassical approach
of the resulting model describes the phases of the two-leg spin ladder with a
ring-exchange. In particular, we derive the low-energy effective actions which
govern the physical properties of the rung-singlet and dominant vector
chirality phases. As a by-product of our approach, we reveal the mutual
induction phenomenon between spin and chirality with, for instance, the
emergence of a vector-chirality phase from the application of a magnetic field
in bilayer systems coupled by four-spin exchange interactions.Comment: 15 pages, 9 figure
Magnetization plateaus in weakly coupled dimer spin system
I study a spin system consisting of strongly coupled dimers which are in turn
weakly coupled in a plane by zigzag interactions. The model can be viewed as
the strong-coupling limit of a two-dimensional zigzag chain structure typical,
e.g., for the -planes of KCuCl_3. It is shown that the magnetization
curve in this model has plateaus at 1/3 and 2/3 of the saturation
magnetization, and an additional plateau at 1/2 can appear in a certain range
of the model parameters; the critical fields are calculated perturbatively. It
is argued that for the three-dimensional lattice structure of the KCuCl_3
family the plateaus at 1/4 and 3/4 of the saturation can be favored in a
similar way, which might be relevant to the recent experiments on NH_4CuCl_3 by
Shiramura et al., J. Phys. Soc. Jpn. {\bf 67}, 1548 (1998).Comment: serious changes in Sect. II,III, final version to appear in PR
Attenuation of ischemic liver injury by prostaglandin E<inf>1</inf> analogue, misoprostol, and prostaglandin I<inf>2</inf> analogue, OP-41483
Background: Prostaglandin has been reported to have protective effects against liver injury. Use of this agent in clinical settings, however, is limited because of drugrelated side effects. This study investigated whether misoprostol, prostaglandin E1 analogue, and OP-41483, prostaglandin I2 analogue, which have fewer adverse effects with a longer half-life, attenuate ischemic liver damage. Study Design: Thirty beagle dogs underwent 2 hours of hepatic vascular exclusion using venovenous bypass. Misoprostol was administered intravenously for 30 minutes before ischemia and for 3 hours after reperfusion. OP-41483 was administered intraportally for 30 minutes before ischemia (2 ÎĽg/kg/min) and for 3 hours after reperfusion (0.5 ÎĽg/kg/min). Animals were divided into five groups: untreated control group (n = 10); high-dose misoprostol (total 100 ÎĽg/kg) group (MP-H, n = 5); middle-dose misoprostol (50 ÎĽg/kg) group (MP-M, n = 5); low-dose misoprostol (25 ÎĽg/kg) group (MP-L, n = 5); and OP-41483 group (OP, n = 5). Animal survival, hepatic tissue blood flow (HTBF), liver function, and histology were analyzed. Results: Two-week animal survival rates were 30% in control, 60% in MP-H, 100% in MP-M, 80% in MP-L, and 100% in OP. The treatments with prostaglandin analogues improved HTBF, and attenuated liver enzyme release, adenine nucleotrides degradation, and histologic abnormalities. In contrast to the MP-H animals that exhibited unstable cardiovascular systems, the MP- M, MP-L, and OP animals experienced only transient hypotension. Conclusions: These results indicate that misoprostol and OP-41483 prevent ischemic liver damage, although careful dose adjustment of misoprostol is required to obtain the best protection with minimal side effects
Attenuation of ischemic liver injury by monoclonal anti-endothelin antibody, awETN40
Background: Enhanced production of endothelin-1 (ET1), vasoconstrictive 21 amino acids produced by endothelial cells during ischemia and after reperfusion of the liver, is known to cause sinusoidal constriction and microcirculatory disturbances, which lead to severe tissue damage. Using a 2- hour hepatic vascular exclusion model in dogs, we tested our hypothesis that neutralization of ET-1 by monoclonal anti-ET-1 and anti-ET-2 antibody (AwETN40) abates vascular dysfunction and ameliorates ischemia/reperfusion injury of the liver. Study Design: After skeletonization, the liver was made totally ischemic by cross-clamping the portal vein, the hepatic artery, and the vena cava (above and below the liver). Venovenous bypass was used to decompress splanchnic and inferior systemic congestion. AwETN40, 5 mg/kg, was administered intravenously 10 minutes before ischemia (treatment group, n = 5). Nontreated animals were used as controls (control group, n = 10). Animal survival, hepatic tissue blood flow, liver function tests; total bile acid, high-energy phosphate, ET-1 levels, and liver histopathology were studied. Results: Treatment with AwETN40 improved 2-week animal survival from 30% to 100%. Hepatic tissue blood flow after reperfusion was significantly higher in the treatment group. The treatment significantly attenuated liver enzyme release, total bile acid, and changes in adenine nucleotides. Immunoreactive ET-1 levels in the hepatic venous blood of the control group showed a significant increase and remained high for up to 24 hours after reperfusion. Histopathologic alterations were significantly lessened in the treatment group. Conclusions: These results indicate that ET-1 is involved in ischemia/reperfusion injury of the liver, which can be ameliorated by the monoclonal anti-ET-1 and antiET-2 antibody AwETN40
Magnetization plateaus as insulator-superfluid transitions in quantum spin systems
We study the magnetization process in two-dimensional S=1/2 spin systems, to
discuss the appearance of a plateau structure. The following three cases are
considered: (1) the Heisenberg antiferromagnet and multiple-spin exchange model
on the triangular lattice, (2) Shastry-Sutherland type lattice, [which is a
possible model for SrCu2(BO3)2,] (3) 1/5-depleted lattice (for CaV4O9). We find
in these systems that magnetization plateaus can appear owing to a transition
from superfluid to a Mott insulator of magnetic excitations. The plateau states
have CDW order of the excitations. The magnetizations of the plateaus depend on
components of the magnetic excitations, range of the repulsive interaction, and
the geometry of the lattice.Comment: 5 pages, RevTeX, 7 figures, note and reference adde
- …