195 research outputs found
A rate- and state-dependent ductile flow law of polycrystalline halite under large shear strain and implications for transition to brittle deformation
We have conducted double-shear biaxial deformation experiments in layers of NaCl within its fully-plastic (FP) regime up to large shear strains (γ < 50) with velocity steps. From this, we have empirically formulated a rate- and state-dependent flow law which explains the transient mechanical behavior. The steady state flow stress in the FP regime can be explained by a power-law with a stress exponent ~8.5 and an activation enthalpy of ~1.3 eV, with the instantaneous response having a higher stress exponent (13 ± 8), although there is data scatter. The transition to brittle regime is associated with weakening from the ductile flow law. In FP regime, the mechanical response is characterized by a monotonic decay to a new steady state while in the transitional regime, by a peak-decay behavior. The transient flow law obtained here is of considerable importance in the study of the brittle-ductile transition in rocks
Constitutive properties of clayey fault gouge from the Hanaore fault zone, southwest Japan
Velocity step tests at a range of slip rates (0.0154–155.54 μm s^(−1)) are performed using natural fault gouge containing smectite, mica, and quartz collected from an outcrop of the Hanaore Fault, southwest Japan. Field and microscopic observations reveal that the shear deformation is localized to a few centimeters or thinner layer of black clayey fault gouge. This layer is formed by multiple stages, and determining the width of the shear zone due to a single event is difficult to determine. The experimental data on the abrupt jumps in the load point velocity are fitted by a rate‐ and state‐dependent frictional law, coupled with the spring‐slider model, the stiffness of which is treated as a fitting parameter. This treatment is shown to be essential to determine the constitutive parameters and their errors. The velocity steps are successfully fit with typically two state variables: larger b_1 with shorter d_(c1) and smaller b_2 with longer d_(c2). At slip rates higher than 1 μm s^(−1), negative b_2 is required to fit the data in most of the cases. Thin gouge layers (∼200 μm) in the experiment enables us to simulate large averaged shear strain which is important to recognize the evolution of the state variable associated with negative b_2 and long d_(c2). Observation of microscopic structure after experiments shows poor development of Y planes. This may be consistent with the mechanical behavior observed: weak occurrence of initial peak strength at yielding and displacement hardening throughout the experiments
Temporal association of vitreous hemorrhage and hypertension after COVID‐19 mRNA vaccines
Vitreous hemorrhage as common eye presentation and hypertension as common systemic presentation are difficult to designate whether they are coincidental or causal in terms of adverse events of COVID-19 vaccinations. Temporal association of hypertension and vitreous hemorrhage was noted in a patient repeatedly after the second and third COVID-19 vaccinations
Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy
The final slip of about 450 m at about 30 m/s of the 1963 Vaiont landslide (Italy) was preceded by >3 year long creeping phase which was localized in centimeter-thick clay-rich layers (60–70% smectites, 20–30% calcite and quartz). Here we investigate the frictional properties of the clay-rich layers under similar deformation conditions as during the landslide: 1–5 MPa normal stress, 2 × 10^(−7) to 1.31 m/s slip rate and displacements up to 34 m. Experiments were performed at room humidity and wet conditions with biaxial, torsion and rotary shear apparatus. The clay-rich gouge was velocity-independent to velocity-weakening in both room humidity and wet conditions. In room humidity experiments, the coefficient of friction decreased from 0.47 at v 0.70 m/s: full lubrication results from the formation of a continuous water film in the gouge. The Vaiont landslide occurred under wet to saturated conditions. The unstable behavior of the landslide is explained by the velocity-weakening behavior of the Vaiont clay-rich gouges. The formation of a continuous film of liquid water in the slipping zone reduced the coefficient of friction to almost zero, even without invoking the activation of thermal pressurization. This explains the extraordinary high velocity achieved by the slide during the final collapse
Presenilin-2 Mutation Causes Early Amyloid Accumulation and Memory Impairment in a Transgenic Mouse Model of Alzheimer's Disease
In order to clarify the pathophysiological role of presenilin-2 (PS2) carrying the Volga German Kindred mutation (N141I) in a conventional mouse model of Alzheimer's disease (AD) expressing amyloid precursor protein (APP) with the Swedish mutation (Tg2576 line), we generated a double transgenic mouse (PS2Tg2576) by crossbreeding the PS2 mutant with Tg2576 mice. Here, we demonstrate that the PS2 mutation induced the early deposition of amyloid β-protein (Aβ) at 2-3 months of age and progressive accumulation at 4-5 months of age in the brains of the mutant mice. The PS2 mutation also accelerated learning and memory impairment associated with Aβ accumulation at 4-5 months of age in Tg2576 mice. These results suggest that the PS2 mutation causes early cerebral amyloid accumulation and memory dysfunction. PS2Tg2576 mice are a suitable mouse model for studying amyloid-lowering therapies
The relationship between attention and avoidance coping in anorexia nervosa: functional magnetic resonance imaging study
[Background] Numerous studies have demonstrated attentional control difficulties and high avoidance coping in patients with anorexia nervosa. Attention is a critical coping resource because it enables individuals to demonstrate self-control and complete goal-directed behaviours. [Aims] We aimed to examine whether attentional control difficulty is related to high avoidance coping, and investigate the neural underpinnings of attentional control difficulties in individuals with anorexia nervosa. [Method] Twenty-three patients with anorexia nervosa and 17 healthy controls completed questionnaires that assessed attention and coping, and underwent functional magnetic resonance imaging while performing a go/no-go task. [Results] Patients with anorexia nervosa showed weaker attentional control, higher omission error rates and higher avoidance coping compared with healthy controls. Attentional control difficulty was associated with higher avoidance coping in both groups. Functional magnetic resonance imaging analysis showed less deactivation in regions representing internal mental processing, such as the praecuneus, cuneus and left lingual gyrus, during the no-go condition. Moreover, weakened deactivation of the left lingual gyrus was associated with higher commission error rate in the anorexia nervosa group. [Conclusions] Our results suggest that patients with anorexia nervosa may have difficulty in maintaining attention to external ongoing events because of disturbance from internal self-related thought, and support the notion that attentional control difficulties underlie the frequent use of avoidance coping in anorexia nervosa
Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome
Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1β, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy
Neural correlates of a mindfulness-based intervention in anorexia nervosa
神経性やせ症患者の不安に対するマインドフルネス瞑想の効果 --脳活動の変化を明らかに--. 京都大学プレスリリース. 2023-02-02.Accepting anxiety for peace of mind. 京都大学プレスリリース. 2023-02-08.We examined the neural underpinnings of the effects of mindfulness on anxiety in anorexia nervosa using functional magnetic resonance imaging in 21 anorexia patients. We used a functional magnetic resonance imaging task designed to induce weight-related anxiety and asked participants to regulate their anxiety either using or not using an acceptance strategy. Our results showed reduced activity in the amygdala, anterior cingulate cortex, putamen, caudate, orbital gyrus, middle frontal gyrus, posterior cingulate cortex and precuneus following a mindfulness-based intervention. The present study provides new insight regarding the neural mechanisms underlying the effect of mindfulness-based intervention in ameliorating anorexia nervosa
A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud
AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements
Elucidation of flow characteristics in honeycomb structure to design nanobubble generating apparatus
A nanobubble generator with honeycomb structures producing a large amount of water including large nanobubble density in a short time is described. The nanobubble‐generating performance is investigated for large and small apparatus having different honeycomb cell dimensions by applying computational fluid dynamics (CFD) coupled with a population balance model (PBM). The CFD simulation shows that a significant pressure drop and shear stress occur in the bubbly flow in the honeycomb cell. The numerical model is based on the Eulerian multiphase model and the PBM is used to calculate the bubble size distribution. The obtained CFD‐PBM results are compared with the experimental results for large and small apparatus. Bubble size distributions in the honeycomb structure under different inlet absolute pressure can be predicted by the PBM. The maximum shear stress is determined as the main controlling factor for nanobubble generation
- …