6 research outputs found
System Would Detect Foreign-Object Damage in Turbofan Engine
A proposed data-fusion system, to be implemented mostly in software, would further process the digitized and preprocessed outputs of sensors in a turbofan engine to detect foreign-object damage (FOD) [more precisely, damage caused by impingement of such foreign objects as birds, pieces of ice, and runway debris]. The proposed system could help a flight crew to decide what, if any, response is necessary to complete a flight safely, and could aid mechanics in deciding what post-flight maintenance action might be needed. The sensory information to be utilized by the proposed system would consist of (1) the output of an accelerometer in an engine-vibration-monitoring subsystem and (2) features extracted from a gas path analysis. ["Gas path analysis" (GPA) is a term of art that denotes comprehensive analysis of engine performance derived from readings of fuel-flow meters, shaft-speed sensors, temperature sensors, and the like.] The acceleration signal would first be processed by a wavelet-transform-based algorithm, using a wavelet created for the specific purpose of finding abrupt FOD-induced changes in noisy accelerometer signals. Two additional features extracted would be the amplitude of vibration (determined via a single- frequency Fourier transform calculated at the rotational speed of the engine), and the rate of change in amplitude due to an FOD-induced rotor imbalance. This system would utilize two GPA features: the fan efficiency and the rate of change of fan efficiency with time. The selected GPA and vibrational features would be assessed by two fuzzy-logic inference engines, denoted the "Gas Path Expert" and the "Vibration Expert," respectively (see Figure 1). Each of these inference engines would generate a "possibility" distribution for occurrence of an FOD event: Each inference engine would assign, to its input information, degrees of membership, which would subsequently be transformed into basic probability assignments for the gas path and vibration components. The outputs of the inference engines would be fused by use of Dempster s combination algorithm (more precisely, an algorithm, based on the Dempster-Shafer-Yager theory of evidence, for fusing uncertain or imprecise information) to provide a reduced body of information to a human or computer decision maker. Figure 2 depicts some outputs generated in response to simulated accelerometer and GPA signal
Relating diffusion tensor imaging measurements to microstructural quantities in the cerebral cortex in multiple sclerosis
To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease‐related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders
Improved clinical investigation and evaluation of high-risk medical devices: the rationale and objectives of CORE-MD (Coordinating Research and Evidence for Medical Devices)
: In the European Union (EU) the delivery of health services is a national responsibility but there are concerted actions between member states to protect public health. Approval of pharmaceutical products is the responsibility of the European Medicines Agency, whereas authorizing the placing on the market of medical devices is decentralized to independent 'conformity assessment' organizations called notified bodies. The first legal basis for an EU system of evaluating medical devices and approving their market access was the medical device directives, from the 1990s. Uncertainties about clinical evidence requirements, among other reasons, led to the EU Medical Device Regulation (2017/745) that has applied since May 2021. It provides general principles for clinical investigations but few methodological details-which challenges responsible authorities to set appropriate balances between regulation and innovation, pre- and post-market studies, and clinical trials and real-world evidence. Scientific experts should advise on methods and standards for assessing and approving new high-risk devices, and safety, efficacy, and transparency of evidence should be paramount. The European Commission recently awarded a Horizon 2020 grant to a consortium led by the European Society of Cardiology and the European Federation of National Associations of Orthopaedics and Traumatology, that will review methodologies of clinical investigations, advise on study designs, and develop recommendations for aggregating clinical data from registries and other real-world sources. The CORE-MD project (Coordinating Research and Evidence for Medical Devices) will run until March 2024; here we describe how it may contribute to the development of regulatory science in Europe
Relating diffusion tensor imaging measurements to microstructural quantities in the cerebral cortex in multiple sclerosis
To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease‐related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders