8 research outputs found

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247

    Strongly coupled matter near phase transition

    Full text link
    In the Hartree approximation of Cornwall-Jackiw-Tomboulis (CJT) formalism of the real scalar field theory, we show that for the strongly coupled scalar system near phase transition, the shear viscosity over entropy density is small, however, the bulk viscosity over entropy density is large. The large bulk viscosity is related to the highly nonconformal equation of state. It is found that the square of the sound velocity near phase transition is much smaller than the conformal value 1/3, and the trace anomaly at phase transition deviates far away from 0. These results agree well with the lattice results of the complex QCD system near phase transition.Comment: 6 pages, 2 figures, 1 table, contributed to the International Conference on Strangeness in Quark Matter 2008, Beijing, China, 6-10 October 200

    Multiplicity Distributions in Canonical and Microcanonical Statistical Ensembles

    Full text link
    The aim of this paper is to introduce a new technique for calculation of observables, in particular multiplicity distributions, in various statistical ensembles at finite volume. The method is based on Fourier analysis of the grand canonical partition function. Taylor expansion of the generating function is used to separate contributions to the partition function in their power in volume. We employ Laplace's asymptotic expansion to show that any equilibrium distribution of multiplicity, charge, energy, etc. tends to a multivariate normal distribution in the thermodynamic limit. Gram-Charlier expansion allows additionally for calculation of finite volume corrections. Analytical formulas are presented for inclusion of resonance decay and finite acceptance effects directly into the system partition function. This paper consolidates and extends previously published results of current investigation into properties of statistical ensembles.Comment: 53 pages, 7 figure

    The Flavours of the Quark-Gluon Plasma

    Full text link
    Quarks of other flavours than up and down, i.e. ss, cc, and bb quarks, have been long recognized as effective probes of the structure of hot QCD matter. In this talk, I review some of the motivations for their investigation and discuss the salient results obtained so far, with a focus on the results from the Relativistic Heavy Ion Collider (RHIC). Some ideas for future studies are also mentioned.Comment: Invited talk given at SQM200
    corecore