195 research outputs found

    Resonances and fluctuations at SPS and RHIC

    Get PDF
    We perform an analysis of preliminary data on hadron yields and fluctuations within the Statistical hadronization ansatz. We describe the theoretical disagreements between different statistical models currently on the market, and show how the simultaneous analysis of yields and fluctuations can be used to determine if one of them can be connected to underlying physics. We perform such an analysis on preliminary RHIC and SPS A-A data that includes particle yields, ratios and event by event fluctuations. We show that the equilibrium statistical model can not describe the K/πK/\pi fluctuation measured at RHIC and SPS, unless an unrealistically small volume is assumed. Such small volume then makes it impossible to describe the total particle multiplicity. The non-equilibrium model,on the other hand, describes both the K/πK/\pi fluctuation and yields acceptably due to the extra boost to the π\pi fluctuation provided by the high pion chemical potential. We show, however, that both models significantly over-estimate the p/πp/\pi fluctuation measured at the SPS, and speculate for the reason behind this.Comment: Presented at Hot Quarks, 2006 In press, European Physical Journal

    Resonances and fluctuations of strange particle in 200 GeV Au-Au collisions

    Get PDF
    We perform an analysis of preliminary data on strange particles yields and fluctuations within the Statistical hadronization model. We begin by describing the theoretical disagreements between different statistical models currently on the market. We then show how the simultaneous analysis of yields and fluctuations can be used to differentiate between the different models, and determine if one of them can be connected to underlying physics. We perform a study on a RHIC 200 GeV data sample that includes stable particles, resonances, and the event-by-event fluctuation of the K/πK/\pi ratio. We show that the equilibrium statistical model can not describe the fluctuation, unless an unrealistically small volume is assumed. Such small volume then makes it impossible to describe the total particle multiplicity. The non-equilibrium model,on the other hand, describes both the K/πK/\pi fluctuation and yields acceptably due to the extra boost to the π\pi fluctuation provided by the high pion chemical potential. Λ(1520)\Lambda(1520) and KK^* abundance is described within error bars, but the Σ\Sigma^* is under-predicted to \sim 1.5 standard deviations. We suggest further measurements that have the potential to test the non-equilibrium model, as well as gauge the effect of re-interactions between hadronization and freeze-out.Comment: References added, equations corrected. As accepted for publication by Journal of Physics

    Forward-backward correlations in nucleus-nucleus collisions: baseline contributions from geometrical fluctuations

    Full text link
    We discuss the effects of initial collision geometry and centrality bin definition on correlation and fluctuation observables in nucleus-nucleus collisions. We focus on the forward-backward correlation coefficient recently measured by the STAR Collaboration in Au+Au collisions at RHIC. Our study is carried out within two models: the Glauber Monte Carlo code with a `toy' wounded nucleon model and the hadron-string dynamics (HSD) transport approach. We show that strong correlations can arise due to averaging over events in one centrality bin. We, furthermore, argue that a study of the dependence of correlations on the centrality bin definition as well as the bin size may distinguish between these `trivial' correlations and correlations arising from `new physics'.Comment: 12 pages, 6 figure

    Electron-muon correlation as a new probe to strongly interacting quark-gluon plasma

    Full text link
    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon which originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.Comment: 4 pages, 2 figure

    Statistical hadronization phenomenology in K/πK/\pi fluctuations at ultra-relativistic energies

    Full text link
    We discuss the information that can be obtained from an analysis of fluctuations in heavy ion collisions within the context of the statistical model of particle production. We then examine the recently published experimental data on ratio fluctuations, and use it to obtain constraints on the statistical properties (physically relevant ensemble, degree of chemical equilibration, scaling across energies and system sizes) and freeze-out dynamics (amount of reinteraction between chemical and thermal freeze-out) of the system.Comment: Proceedings, SQM2009. Fig. 4, the main results figure, was wrong due to editing mistake, now correcte

    Strange Hadron Resonances and QGP Freeze-out

    Get PDF
    We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct differentiation between the explosive sudden, and staged adiabatic freeze-out scenarios.Comment: 8 pages including 4 figures, in Proceedings of Strange Quark Matter 2001, Frankfurt, submitted to J. Phys. G version 2: refernces corrected/added, numercial corrections in figures 2,3,

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247

    A comparison of statistical hadronization models

    Full text link
    We investigate the sensitivity of fits of hadron spectra produced in heavy ion collisions to the choice of statistical hadronization model. We start by giving an overview of statistical model ambiguities, and what they tell us about freeze-out dynamics. We then use Montecarlo generated data to determine sensitivity to model choice. We fit the statistical hadronization models under consideration to RHIC data, and find that a comparison χ2\chi^2 fits can shed light on some presently contentious questions.Comment: Proceedings for SQM2003 [7th Int. Conf. on Strangeness in Quark Matter (Atlantic Beach, NC, USA, Mar 12-17, 2003)], to be published in Journal of Physics G (Typos corrected, reference added

    Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP

    Get PDF
    We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.Comment: v2 expended: 20 pages, 23 figures, 5 tables, in press EPJ-
    corecore